PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combination of mesoporous titanium dioxide with MoS2 nanosheets for high photocatalytic activity

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents a facile approach for the preparation of MoS2  nanosheet decorated by porous titanium dioxide with effective photocatalytic activity. Mesoporous titanium dioxide nanostructures first synthesized by a hydrothermal process using titanium (III) chloride and then the MoS2 /TiO2  were prepared through mixing of MoS2  nanosheet with mesoporous titanium dioxide under ultrasonic irradiation. The synthesized nanocomposite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), and Brunauer-Emmett-Teller (BET) analysis. The results showed that the nanocomposite has mesoporous structure with specific surface area of 176.4 m2 /g and pore diameter of 20 nm. The as-prepared MoS2 /TiO2  nanocomposites exhibited outstanding photocatalytic activity for dye degradation under sunlight irradiation, which could be attributed to synergistic effect between the molybdenum disulfide nanosheet and mesoporous titanium dioxide. The photocatalytic performance achieved is about 2.2 times higher than that of mesoporous TiO2  alone. It is believed that the extended light absorption ability and the large specific surface area of the 2D MoS2  nanosheets in the nanocomposite, leading to the enhanced photocatalytic degradation activity.
Rocznik
Strony
56--60
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
  • Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran (Islamic Republic of Iran)
Bibliografia
  • 1. Hoffmann, M.R., Martin, S.T., Choi, W. & Bahnemann, D.W. (1995). Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96. DOI: 10.1021/cr00033a004.
  • 2. Serpone, N. & Emeline, A.V. (2012). Semiconductor photocatalysis–past, present, and future outlook. J. Phys. Chem. Lett. 3(5), 673–677. DOI: 10.1021/jz300071j.
  • 3. Gholami, T., Salavati-Niasari, M., Reza Momenian, H., Noori, E. & Ghanbari, D. (2015). Synthesis of Titanium Dioxide Nanoparticles and Investigation of Its Photocatalytic Properties. Synth. React. Inorg. M, 45(7), 1092–1096. DOI: 10.1080/15533174.2013.862670.
  • 4. Chen, X. & Selloni, A. (2014). Introduction: titanium dioxide (TiO2) nanomaterials. Chem. Rev., 114(19), 9281–9282. DOI: 10.1021/cr500422r.
  • 5. Ge, M.Z., Cao, C.Y., Huang, J.Y., Li, S.H., Zhang, S. N., Deng, S., Li, Q.S., Zhang, K.Q. & Lai, Y.K. (2016). Synthesis, modification, and photo/photoelectro catalytic degradation applications of TiO2 nanotube arrays: a review. Nanotechnol. Rev. 5(1), 75–112. DOI: 10.1515/ntrev-2015-0049.
  • 6. Jafari, T., Moharreri, E., Amin, A.S., Miao, R., Song, W. & Suib, S.L. (2016). Photocatalytic water splitting-the untamed dream: a re view of recent advances. Molecules 21(7), 900. DOI: 10.3390/molecules21070900.
  • 7. Wen, J., Li, X., Liu, W., Fang, Y., Xie, J. & Xu, Y. (2015). Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese J. Catal. 36(12), 2049–2070. DOI: 10.1016/S1872-2067(15)60999-8.
  • 8. Zohoori, S., Karimi, L. & Ayaziyazdi, S. (2014). A novel durable photoactive nylon fabric u sing electrospun nanofibers containing nanophotocatalysts. J. Indus. Eng. Chem. 20(5), 2934–2938. DOI: 10.1016/j.jiec.2013.10.062.
  • 9. Sher Shah, M.S.A., Park, A.R., Zhang, K., Park, J.H. & Yoo, P.J. (2012). Green synthesis of biphasic TiO2–reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 4(8), 3893–3901. DOI: 10.1021/am301287m.
  • 10. Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S., Hamilton, J.W., Byrne, J.A., O’shea, K. & Entezari, M.H. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B. 125, 331–349. DOI: 10.1016/j.apcatb.2012.05.036.
  • 11. Perera, S.D., Mariano, R.G., Vu, K., Nour, N., Seitz, O., Chabal, Y. & Balkus Jr, K.J. (2012). Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. Acs Catal. 2(6), 949–956. DOI: 10.1021/cs200621c.
  • 12. Posa, V.R., An navaram, V., Koduru, J.R., Bobbala, P. & Somala, A.R. (2016). Preparation of graphene–TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation. J. Exp. Nanosci. 11(9), 722–736. DOI: 10.1080/17458080.2016.1144937.
  • 13. Li, L., Zhu, W., Zhang, P., Chen, Z. & Han, W. (2003). Photocatalytic oxidation and ozonation of catechol over carbon-black-modified nano-TiO2 thin films supported on Al sheet. Water Res. 37(15), 3646–3651. DOI: 10.1016/S0043-1354(03)00269-0.
  • 14. Nguyen, V.H., Ren, Y., Lee, Y.R., Tuma, D., Min, B.K. & Shim, J.J. (2012). Microwave-assisted synthesis of carbon nanotube-TiO2 nanocomposites in ionic liquid for the photocatalytic degradation of methylene blue. Synth. React. Inorg. M. 42(2), 296–301. DOI: 10.1080/15533174.2011.610021.
  • 15. Rath, P.C., Nayak, S., Bhattacharjee, S., Besra, L. & Singh, B.P. (2014). Nanotitania-coated multi-walled carbon nanotube composite by facile colloidal processing route for photocatalytic applications. Compos. Interfaces 21(3), 251–262. DOI: 10.1080/15685543.2014.864530.
  • 16. Chowdhury, P., Malekshoar, G., Ray, M.B., Zhu, J. & Ray, A.K. (2013). Sacrificial hydrogen generation from formaldehyde with Pt/TiO2 photocatalyst in solar radiation. Indus. Eng. Chem. Res. 52(14), 5023–5029. DOI: 10.1021/ie3029976.
  • 17. Zhang, F., Xie, F., Fang, T., Zhang, K., Chen, T. & Oh, W. (2012). Photocatalytic Degradation of Methyl Orange on Platinum and Palladium Co-doped TiO2 Nanoparticles. Synth. React. Inorg. M. 42(5), 685–691. DOI: 10.1080/15533174.2011.615040.
  • 18. Li, X., Huang, T., Luo, K., Zhang, P., Li, Z. & Liang, C. (2013). Synthesis and catalytic property of Au/titania nanocomposites on the photolytic degradation of methyl orange. Synth. React. Inorg. M. 43, 367–372. DOI: 10.1080/15533174.2012.740726.
  • 19. Miljevic, M., Geiseler, B., Bergfeldt, T., Bockstaller, P. & Fruk, L. (2014). Enhanced photocatalytic activity of Au/TiO2 nanocomposite prepared using bifunctional bridging linker. Adv. Funct. Mater. 24(7), 907–915. DOI: 10.1002/adfm.201301484.
  • 20. Lu, Q., Lu, Z., Lu, Y., Lv, L., Ning, Y., Yu, H., Hou, Y. & Yin, Y. (2013). Photocatalytic synthesis and photovoltaic application of Ag-TiO2 nanorod composites. Nano Lett. 13(11), 5698–5702. DOI: 10.1021/nl403430x.
  • 21. Yang, D., Sun, Y., Tong, Z., Tian, Y., Li, Y. & Jiang, Z. (2015). Synthesis of Ag/TiO2 nanotube heterojunction with improved visible-light photocatalytic performance inspired by bioadhesion. J. Phys. Chem. C 119(11), 5827–5835. DOI: 10.1021/jp511948p.
  • 22. Leary, R. & Westwood, A. (2011). Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49(3), 741–772. DOI: 10.1016/j.carbon.2010.10.010.
  • 23. Kumar, S.G. & Devi, L.G. (2011). Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115(46), 13211–13241. DOI: 10.1021/jp204364a.
  • 24. Bai, S., Wang, L., Chen, X., Du, J. & Xiong, Y. (2015). Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 8(1), 175–183. DOI: 10.1007/s12274-014-0606-9.
  • 25. Zhang, W., Xiao, X., Zheng, L. & Wan, C. (2015). Fabrication of TiO2/MoS2 composite photocatalyst and its photocatalytic mechanism for degradation of methyl orange under visible light. Can. J. Chem. Eng. 93(9), 1594–1602. DOI: 10.1002/cjce.22245.
  • 26. Tao, J., Chai, J., Guan, L., Pan, J. & Wang, S. (2015). Effect of interfacial coupling on photocatalytic performance of large scale MoS2/TiO2 hetero-thin films. Appl. Phys. Lett. 106(8), 081602. DOI: 10.1063/1.4913662.
  • 27. Ren, X., Qi, X., Shen, Y., Xiao, S., Xu, G., Zhang, Z., Huang, Z. & Zhong, J. (2016). 2D co-catalytic MoS2 nanosheets embedded with 1D TiO2 nanoparticles for enhancing photocatalytic activity. J. Phys. D: Appl. Phys. 49(31), 315304. DOI: 10.1088/0022-3727/49/31/315304.
  • 28. Zhou, W., Yin, Z., Du, Y., Huang, X., Zeng, Z., Fan, Z., Liu, H., Wang, J. & Zhang, H. (2013). Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9(1), 140–147. DOI: 10.1002/smll.201201161.
  • 29. Shen, M., Yan, Z., Yang, L., Du, P., Zhang, J. & Xiang, B. (2014). MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. Chem. Commun. 50(97), 15447–15449. DOI: 10.1039/C4CC07351G.
  • 30. Yuan, Y.J., Ye, Z.J., Lu, H.W., Hu, B., Li, Y.H., Chen, D.Q., Zhong, J.S., Yu, Z.T. & Zou, Z.G. (2015). Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catal. 6(2), 532–541. DOI: 10.1021/acscatal.5b02036.
  • 31. Liu, Q., Pu, Z., Asiri, A. M., Qusti, A. H., Al-Youbi, A. O. & Sun, X. (2013). One-step solvothermal synthesis of MoS2/TiO2 nanocomposites with enhanced photocatalytic H2 production. J. Nanopart. Res. 15(11), 1–7. DOI: 10.1007/s11051-013-2057-8
  • 32. Hu, K.H., Hu, X.G., Xu, Y.F. & Sun, J.D. (2010). Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange. J. Mater. Sci. 45(10), 2640–2648. DOI: 10.1007/s10853-010-4242-9.
  • 33. O’Neill, A., Khan, U. & Coleman, J.N. (2012). Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 24(12), 2414–2421. DOI: 10.1021/cm301515z.
  • 34. Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J. & Shvets, I.V. (2011). Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571. DOI: 10.1126/science.1194975.
  • 35. Karimi, L., Zohoori, S. & Yazdanshenas, M.E. (2014). Photocatalytic degradation of azodyes in aqueous solutions under UV irradiation using nano-strontium titanate as the nanophotocatalyst. J. Saudi Chem. Soc. 18(5), 581–588. DOI: 10.1016/j.jscs.2011.11.010.
  • 36. Shirgholami, M.A., Karimi, L. & Mirjalili, M. (2016). Multifunctional modification of wool fabric using graphene/TiO2 nanocomposite. Fiber. Polym. 17(2), 220–228. DOI: 10.1007/s12221-016-5838-8.
  • 37. Kim, E.Y., Kim, D.S., & Ahn, B.T. (2009). Synthesis of mesoporous TiO2 and its application to photocatalytic activation of methylene blue and E. coli. Bull. Korean Chem. Soc. 30(1), 193–196. DOI: 10.5012/bkcs.2009.30.1.193.
  • 38. ALOthman, Z.A. (2012). A review: fundamental aspects of silicate mesoporous materials. Materials 5(12), 2874–2902. DOI: 10.3390/ma5122874.
  • 39. Karimi, L. & Zohoori, S. (2013). Su perior photocatalytic degradation of azo dyes in aqueous solutions using TiO2/SrTiO3 nanocomposite. J. Nanostructure Chem. 3(1), 1–5. DOI: 10.1186/2193-8865-3-32.
  • 40. Mirjalili, M., Karimi, L. & Barari-tari, A. (2015). Investigating the effect of corona treatment on self-cleaning property of finished cotton fabric with nano titanium dioxide. J. Text. Inst. 106(6), 621–628. DOI: 10.1080/00405000.2014.932058.
  • 41. Li, W., Wu, Z., Wang, J., Elzatahry, A.A. & Zhao, D. (2013). A perspective on mesoporous TiO2 materials. Chem. Mater. 26(1), 287–298. DOI: 10.1021/cm4014859
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7747f4e7-c9eb-4ba7-bee8-0143a7097690
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.