PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania kinetyczne adsorpcji wybranych barwników z roztworów wodnych na nanoporowatych węglach aktywnych otrzymanych z prekursorów polimerowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Kinetic studies of selected dye adsorption from aqueous solutions on nanoporous carbons obtained from polymeric precursors
Języki publikacji
PL
Abstrakty
PL
Badano kinetykę adsorpcji wybranych barwników (oranż kwasowy 7, oranż kwasowy 52 i błękit zasadowy 9) z roztworów wodnych na trzech porowatych adsorbentach. Dwa z nich stanowiły proszkowe węgle otrzymane laboratoryjnie z prekursorów polimerowych, natomiast trzeci – zastosowany w celach porównawczych – był handlowym węglem aktywnym firmy Chemviron Carbon. Pierwszy adsorbent laboratoryjny był węglem aktywnym ze znaczną objętością mikroporów, otrzymanym z sulfonowej żywicy styrenowo-dwuwinylobenzenowej. Drugi był natomiast uporządkowanym mezoporowatym węglem otrzymanym z żywicy fenolowo-formaldehydowej metodą miękkiego odwzorowania. Do opisu kinetyki procesu adsorpcji barwników wykorzystano równania pseudo I i pseudo II rzędu. Stwierdzono, że adsorpcja wybranych barwników na badanych węglach aktywnych przebiegała zgodnie z modelem pseudo II rzędu, o czym świadczyły wartości współczynnika korelacji bliskie 1. Wykazano, że kinetyka adsorpcji na poszczególnych węglach różniła się istotnie – stan równowagi adsorpcyjnej osiągany był najszybciej (kilka minut) na węglu aktywnym z sulfonowej żywicy styrenowo-dwuwinylobenzenowej, natomiast najwolniej (kilka godzin) na węglu handlowym. Badane węgle także istotnie różniły się pojemnością adsorpcyjną – najlepszą charakteryzował się węgiel aktywny otrzymany z sulfonowej żywicy styrenowo-dwuwinylobenzenowej. Wymagana dawka tego węgla w celu usunięcia 100% barwnika z roztworu o stężeniu 150 mg/dm3 wynosiła 400 mg/dm3, natomiast w przypadku pozostałych dwóch węgli była pięciokrotnie większa.
EN
Adsorption kinetics of the selected dyes (Acid Orange 7, Acid Orange 52 and Basic Blue 9) from aqueous solutions were studied on three porous materials. Two of them were laboratory powdered carbons obtained from polymeric precursors, while the third one was a commercial micro-mesoporous activated carbon from Chemviron Carbon, used for reference purposes. The first laboratory adsorbent was an active carbon with a high micropore volume, synthesized from the sulfonated styrene-divinylbenzene resin. The second one was an ordered, mesoporous carbon obtained from phenol-formaldehyde resin by soft-templating. The adsorption kinetics data was illustrated using the pseudo-first and pseudo-second order models. The correlation coefficient values close to unity proved that adsorption of selected dyes on the studied active carbons proceeded according to the pseudo-second order model. It was demonstrated that the adsorption kinetics differed significantly between the studied materials. The active carbon obtained from the sulfonated styrene-divinylbenzene resin was the quickest (minutes) to reach the adsorption equilibrium, while the commercial one was the slowest (hours). Additionally, the studied carbons displayed significantly different adsorption capacities. The activated carbon obtained from the sulfonated styrene-divinylbenzene resin was the best adsorbent and 400 mg/dm3 was a dose sufficient to remove 100% of the dye from 150 mg/dm3 solution. For the remaining two carbons that dose was five times higher.
Czasopismo
Rocznik
Strony
3--12
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
  • Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
autor
  • Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
Bibliografia
  • 1. A. BAFANA, S.S. DEVI, T. CHAKRABARTI: Azo dyes: Past, present and the future. Environmental Reviews 2011, Vol. 19, pp. 350–370.
  • 2. M.A.M. SALLEH, D.K. MAHMOUD, W.A. KARIM, A. IDRIS: Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination 2011, Vol. 280, pp. 1–13.
  • 3. M.T. YAGUB, T.K. SEN, S. AFROZE, H.M. ANG: Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science 2014, Vol. 209, pp. 172–184.
  • 4. M. HADIA, M. SAMARGHANDIA, G. MCKAYB: Equilibrium two-parameter isotherms of acid dyes sorption by activated carbons: Study of residual errors. Chemical Engineering Journal 2010, Vol. 160, pp. 408–416.
  • 5. M. ÖZACAR, İ.A. ŞENGIL: Adsorption of acid dyes from aqueous solutions by calcined alunite and granular activated carbon. Adsorption 2002, Vol. 8, pp. 301–308.
  • 6. G.M. WALKER, L.R. WEATHERLEY: Adsorption of dyes from aqueous solution – the effect of adsorbent pore size distribution and dye aggregation. Chemical Engineering Journal 2001, Vol. 83, pp. 201–206.
  • 7. J. CHOMA, M. CZUBASZEK, M. JARONIEC: Adsorpcja barwników z roztworów wodnych na węglach aktywnych (Adsorption of dyes from aqueous solutions on active carbons). Ochrona Środowiska 2015, vol. 37, nr 3, ss. 3–14.
  • 8. D.A. GIANNAKOUDAKIS, G.Z. KYZAS, A. AVRANAS, N.K. LAZARIDIS: Multi-parametric adsorption effects of the reactive dye removal with commercial activated carbons. Journal of Molecular Liquids 2016, Vol. 213, pp. 381–389.
  • 9. M.E. FERNANDEZA, G.V. NUNELLA, P.R. BONELLI, A.L. CUKIERMAN: Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes. Industrial Crops and Products 2014, Vol. 62, pp. 437–445.
  • 10. M. JAMSHIDI, M. GHAEDI, K. DASHTIAN, S. HAJATI, A.A. BAZRAFSHAN: Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: Derivative spectrophotometric, optimization, kinetic and isotherm study. Ultrasonics Sonochemistry 2016, Vol. 32, pp. 119–131.
  • 11. M.J. AHMED: Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption: Review. Journal of Environmental Chemical Engineering 2016, Vol. 4, pp. 89–99.
  • 12. G. MEZOHEGYI, F. P. van der ZEE, J. FONT, A. FORTUNY, A. FABREGAT: Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. Journal of Environmental Management 2012, Vol. 102, pp. 148–164.
  • 13. S. RANGABHASHIYAM, N. ANU, N. SELVARAJU: Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. Journal of Environmental Chemical Engineering 2013, Vol. 1, pp. 629–641.
  • 14. T. AHMAD, M. DANISH, M. RAFATULLAH, A. GHAZALI, O. SULAIMAN, R. HASHIM, M. NASIR, M. IBRAHIM: The use of date palm as a potential adsorbent for wastewater treatment: A review. Environmental Science and Pollution Research 2012, Vol. 19, pp. 1464–1484.
  • 15. F. KAOUAH, S. BOUMAZA, T. BERRAMA, M. TRARI, Z. BENDJAMA: Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46. Journal of Cleaner Production 2013, Vol. 54, pp. 296–306.
  • 16. M.U. DURAL, L. CAVAS, S.K. PAPAGEORGIOU, F.K. KATSAROS: Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: Kinetics and equilibrium studies. Chemical Engineering Journal 2011, Vol. 168, pp. 77–85.
  • 17. P. SHARMA, H. KAUR, M. SHARMA, V. SAHORE: A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environmental Monitoring and Assessment 2011, Vol. 183, pp. 151–195.
  • 18. S. RANGABHASHIYAM, N. ANU, N. SELVARAJU: Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. Journal of Environmental Chemical Engineering 2013, Vol. 1, pp. 629–641.
  • 19. T. JÓŹWIAK, U. FILIPKOWSKA, J. RODZIEWICZ, A. MIELCAREK, D. OWCZARKOWSKA: Zastosowanie kompostu jako taniego sorbentu do usuwania barwników z roztworów wodnych. Rocznik Ochrona Środowiska 2013, vol. 15, ss. 2398–2411.
  • 20. J.L. FIGUEIREDO, J.P.S. SOUSA, C.A. ORGE, M.F.R. PEREIRA, J.J.M. ÓRFAO: Adsorption of dyes on carbon xerogels and templated carbons: Influence of surface chemistry. Adsorption 2011, Vol. 17, pp. 431–441.
  • 21. J. GOSCIANSKA, M. MARCINIAK, R. PIETRZAK: Ordered mesoporous carbons modified with cerium as effective adsorbents for azo dyes removal. Separation and Purification Technology 2015, Vol. 154, pp. 236–245.
  • 22. D. ZHAO, W. ZHANG, C. CHEN, X. WANG: Adsorption of methyl orange dye onto multiwalled carbon nanotubes. Procedia Environmental Sciences 2013, Vol. 18, pp. 890–895.
  • 23. L. LI., L. YUJING, W. JIAPING, L. SHUANGXI, Z. TAN: Adsorption characteristics of activated carbon derived from scrap tires for malachite green: Influence of small organics. Transactions of Tianjin University 2013, Vol. 19, pp. 425–429.
  • 24. E.L.K. MUI, W.H. CHEUNG, M. VALIX, G. MCKAY: Mesoporous activated carbon from waste tyre rubber for dye removal from effluents. Microporous and Mesoporous Materials 2010, Vol. 130, pp. 287–294.
  • 25. S. EFTEKHARI, A. HABIBI-YANGJEH, S. SOHRABNEZHAD: Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B: Thermodynamic and kinetic studies. Journal of Hazardous Materials 2010, Vol. 178, pp. 349–355.
  • 26. X. DONG, J. FU, X. XIONG, C. CHEN: Preparation of hydrophilic mesoporous carbon and its application in dye adsorption. Materials Letters 2011, Vol. 65, pp. 2486–2488.
  • 27. C.K. LEE, S.S. LIU, L.C. JUANG, C.C. WANG, K.S. LIN, M.D. LYU: Application of MCM-41 for dyes removal from wastewater. Journal of Hazardous Materials 2007, Vol. 147, pp. 997–1005.
  • 28. J. CHOMA, Ł. OSUCHOWSKI, M. MARSZEWSKI, M. JARONIEC: Highly microporous polymer-based carbons for CO2 and H2 adsorption. RSC Advances 2014, Vol. 4, pp. 14795–14802.
  • 29. G. MAKOMASKI, W. CIESIŃSKA, J. ZIELIŃSKI: Zastosowanie odpadów poli(tereftalanu etylenu) lub żywicy fenolowo-formaldehydowej do otrzymywania węgli aktywnych Polimery 2012, vol. 57, nr 9, ss. 635–639.
  • 30. M.A. NAHIL, P.T. WILLIAMS: Activated carbons from acrylic textile waste. Journal of Analytical and Applied Pyrolysis 2010, Vol. 89, pp. 51–59.
  • 31. H. GHORBANI, H. TAVANAI, M. MORSHED: Fabrication of activated carbon nanoparticles from PAN precursor. Journal of Analytical and Applied Pyrolysis 2014 Vol. 110, pp. 12–17.
  • 32. J. CHOMA, K. STACHURSKA, M. MARSZEWSKI, M. JARONIEC: Equilibrium isotherms and isosteric heat for CO2 adsorption on nanoporous carbons from polymers. Adsorption 2016, Vol. 22, pp. 581–588.
  • 33. J. CHOMA, K. STACHURSKA, Ł. OSUCHOWSKI, A. DZIURA, M. JARONIEC: Adsorpcja dwutlenku węgla na węglach aktywnych otrzymanych z prekursorów polimerowych (Carbon dioxide adsorption on activated carbons obtained from polymeric precursors). Ochrona Środowiska 2015, vol. 37, nr 4, ss. 1–6.
  • 34. S. RONKA: Properties of novel spherical carbon adsorbents synthesized from phosphorylated polymeric precursors. Journal of Analytical and Applied Pyrolysis 2014, Vol. 110, pp. 390–400.
  • 35. T.Y. MA, L. LIU, Z.Y. YUAN: Direct synthesis of ordered mesoporous carbons. Chemical Society Reviews 2013, Vol. 42, pp. 3977–4003.
  • 36. F. LIAN, B. XING, L. ZHU: Comparative study on composition, structure, and adsorption behavior of activated carbons derived from different synthetic waste polymers. Journal of Colloid and Interface Science 2011, Vol. 360, pp. 725–730.
  • 37. J. LI, D.H.L. NG, P. SONG, C. KONG, Y. SONG, P. YANG: Preparation and characterization of high-surface area activated carbon fibers from silkworm cocoon waste for congo red adsorption. Biomass and Bioenergy 2015, Vol. 75, pp. 189–200.
  • 38. J. GOSCIANSKA, M. MARCINIAK, R. PIETRZAK: Mesoporous carbons modified with lanthanum(III) chloride for methyl orange adsorption. Chemical Engineering Journal 2014, Vol. 247, pp. 258–264.
  • 39. Z. QIANG, B. GURKAN, J. MA, X. LIU, Y. GUO, M. CAKMAK, K.A. CAVICCHI, B.D. VOGT: Roll-to-roll fabrication of high surface area mesoporous carbon with process-tunable pore texture for optimization of adsorption capacity of bulky organic dyes. Microporous and Mesoporous Materials 2016, Vol. 227, pp. 57–64.
  • 40. L. TANG, Y. CAI, G. YANG, Y. LIU, G. ZENG, Y. ZHOU, S. LI, J. WANG, S. ZHANG, Y. FANG, Y. HE: Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon for highly effective adsorption of rhodamine B. Applied Surface Science 2014, Vol. 314, pp. 746–753.
  • 41. P.K. TRIPATHI, M. LIU, Y. ZHAO, X. MA, L. GAN, O. NOONAN, C. YU: Enlargement of uniform micropores in hierarchically ordered micro–mesoporous carbon for high level decontamination of bisphenol A. Royal Society of Chemistry 2014, Vol. 2, pp. 8534–8544.
  • 42. Z. WU, D. ZHAO: Ordered mesoporous materials as adsorbents. The Royal Society of Chemistry 2011, Vol. 47, pp. 3332–3338.
  • 43. B. KAYRANLI: Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution; isotherm, kinetic and thermodynamic study. Chemical Engineering Journal 2011, Vol. 173, pp. 782–791.
  • 44. W. PŁAZIŃSKI, W. RUDZIŃSKI: Kinetyka adsorpcji na granicy faz roztwór/ciało stałe. Znaczenie równań pseudo-first order oraz pseudo-second order. Wiadomości Chemiczne 2011, vol. 65, ss. 11–12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77458533-4b00-4e2f-965a-c7fda2519dcb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.