PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional p&q-Laplacian problems with potentials vanishing at infinity

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we prove the existence of a positive and a negative ground state weak solution for the following class of fractional p&g-Laplacian problems [formula] where [formula]and [formula] are continuous, positive functions, allowed for vanishing behavior at infinity, ƒ is a continuous function with quasicritical growth and the leading operator [formula] , with t ∈ {p, q}, is the fractional t-Laplacian operator.
Rocznik
Strony
93--110
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
  • Dipartimento di Ingegneria Industriale e Scienze Matematiche Universita Politecnica delle Marche Via Brecce Bianche, 12 60131 Ancona, Italy
Bibliografia
  • [1] CO. Alves, M.A.S. Souto, Existence of solutions for a class of elliptic equations in Rw with vanishing potentials, J. Differential Equations 252 (2012), 5555-5568.
  • [2] CO. Alves, M.A.S. Souto, Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity, J. Differential Equations 254 (2013), 1977-1991.
  • [3] CO. Alves, V. Ambrosio, T. Isernia, Existence, multiplicity and concentration for a class of fractional p&zq Laplacian problems in HŁN, Commun. Pure Appl. Anal. 18 (2019) 4, 2009-2045.
  • [4] A. Ambrosetti, V. Felli, A. Malchiodi, Ground states of nonlinear Schrodinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. (JEMS) 7 (2005) 1, 117-144.
  • [5] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
  • [6] V. Ambrosio, A multiplicity result for a fractional p-laplacian problem without growth conditions, Riv. Mat. Univ. Parma 9 (1) (2018), 53-71.
  • [7] V. Ambrosio, Concentrating solutions for a class of nonlinear fractional Schrodinger equations in RN, Rev. Mat. Iberoam. 35 (2019) 5, 1367-1414.
  • [8] V. Ambrosio, Fractional p&zq Laplacian problems in Rw with critical growth, Z. Anal. Anwend. 32 (2019), 301-327.
  • [9] V. Ambrosio, T. Isernia, Sign-changing solutions for a class of Schrodinger equations with vanishing potentials, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018) 1, 127-152.
  • [10] V. Ambrosio, T. Isernia, Multiplicity and concentration results for some nonlinear Schrodinger equations with the fractional p-Laplacian, Discrete Contin. Dyn. Syst. 38 (11) (2018), 5835-5881.
  • [11] V. Ambrosio, T. Isernia, On a fractional p&zq Laplacian problem with critical Sobolev-Hardy exponents, Mediterr. J. Math. 15 (2018) 6, Art. 219, 17 pp.
  • [12] V. Ambrosio, T. Isernia, On the multiplicity and concentration for p-fractional Schrodinger equations, Appl. Math. Lett. 95 (2019), 13-22.
  • [13] V. Ambrosio, CM. Figueiredo, T. Isernia, G. Molica Bisci, Sign-changing solutions for a class of zero mass nonlocal Schrodinger equations, Adv. Nonlinear Stud. 19 (2019) 1, 113-132.
  • [14] V. Ambrosio, T. Isernia, G. Siciliano, On a fractional p&iq Laplacian problem with critical growth, Minimax Theory Appl. 4 (2019) 1, 1-19
  • [15] S. Barile, CM. Figueiredo, Existence of a least energy nodal solution for a class of p&zq-quasilinear elliptic equations, Adv. Nonlinear Stud. 14 (2014) 2, 511-530.
  • [16] S. Barile, CM. Figueiredo, Existence of least energy positive, negative and nodal solutions for a class of p&iq-problems with potentials vanishing at infinity, J. Math. Anal. Appl. 427 (2015) 2, 1205-1233.
  • [17] V. Benci, C.R. Grisanti, A.M. Micheletti, Existence of solutions for the nonlinear Schrodinger equation with y(oo) = 0, Progr. Nonlinear Differential Equations Appl. 66 (2005), 53-65.
  • [18] H. Berestycki, P.L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 313-346
  • [19] M. Bhakta, D. Mukherjee, Multiplicity results for {p,q) fractional elliptic equations involving critical nonlinearities, Adv. Differential Equations 24 (2019) 3-4, 185-228.
  • [20] D. Bonheure, J. Van Schaftingen, Ground states for the nonlinear Schrodinger equation with potential vanishing at infinity, Ann. Mat. Pura Appl. (4) 189 (2010) 2, 273-301.
  • [21] D. Borkowski, K. Jańczak-Borkowska, Backward stochastic variational inequalities driven by multidimensional fractional Brownian motion, Opuscula Math. 38 (2018) 3, 307-326.
  • [22] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983) 3, 486-490.
  • [23] L. Caffarelli, Non-local diffusions, drifts and games, [in:] Nonlinear Partial Differential Equations, volume 7 ol Abel Symposia, pp. 37-52, 2012.
  • [24] L. Caffarelli, L. Silvestre, An extension problem, related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245-1260.
  • [25] C. Chen, J. Bao, Existence, none.xiste.nce, and multiplicity of solutions for the fractional p&zq-Laplacian equation in M,N, Bound. Value Probl. 2016, Paper No. 153, 16 pp.
  • [26] L. Cherfils, V. IFyasov, On the stationary solutions of generalized reaction difusion equations with p&iq-Laplacian, Commun. Pure Appl. Anal. 1 (2004), 1-14.
  • [27] A. Di Castro, T. Kuusi, G. Palatucci, Local behavior of fractional p-minimizers, Ann. Inst. H. Poincare Anal. Non Lineaire 33 (5) (2016) 1279-1299.
  • [28] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math. 136 (2012), 521-573.
  • [29] P. Felmer, A. Quaas, J. Tan, Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 1237-1262.
  • [30] G.M. Figueiredo, Existence of positive solutions for a class of p&iq elliptic problems with critical growth on RN, J. Math. Anal. Appl. 378 (2011), 507-518.
  • [31] G. Franzina, G. Palatucci, Fractional p-eigenvalues, Riv. Math. Univ. Parma (N.S.) 5 (2014), 373-386.
  • [32] C. He, G. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing p&zq-Lapladans, Ann. Acad. Sci. Fenn. Math. 33 (2008) 2, 337-371.
  • [33] T. Isernia, On a nonhomogeneous sublinear-superlinear fractional equation in HŁN, Riv. Math. Univ. Parma (N.S.) 10 (2019) 1, 167-186.
  • [34] T. Isernia, Sign-changing solutions for a fractional Kirchhoff equation, Nonlinear Anal. 190 (2020), 111623, 20 pp.
  • [35] N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000) 4-6, 298-305.
  • [36] G. Li, Z. Guo, Multiple solutions for the p&zq-Lapladan problem with critical exponent, Acta Math. Sci. Ser. B Engl. Ed. 29 (4) (2009), 903-918.
  • [37] G.B. Li, X. Liang, The existence of nontrivial solutions to nonlinear elliptic equation of p - q-Laplacian type onRN, Nonlinear Anal. 71 (2009), 2316-2334.
  • [38] E. Lindgren, P. Lindqvist, Fractional eigenvalues, Calc. Var. 49 (2014), 795-826.
  • [39] G. Molica Bisci, V. Radulescu, Ground state solutions of scalar field fractional Schrodinger equations, Calc. Var. Partial Differential Equations 54 (2015) 3, 2985-3008.
  • [40] G. Molica Bisci, V. Radulescu, R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, 162, Cambridge, 2016.
  • [41] T. Mukherjee, K. Sreenadh, On Dirichlet problem for fractional p-Laplacian with singular non-linearity, Adv. Nonlinear Anal. 8 (2019) 1, 52-72.
  • [42] N. Papageorgiou, V. Radulescu, D. Repovs, Ground state and nodal solutions for a class of double phase problems, Z. Angew. Math. Phys. 71 (2020) 1, Paper No. 15.
  • [43] S. Secchi, Ground state solutions for nonlinear fractional Schrodinger equations in M,N, J. Math. Phys. 54 (2013), 031501.
  • [44] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhauser Boston, Inc., Boston, MA, 1996.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77439835-52e8-41fd-a4e8-d989d83bc17c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.