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Abstract. In this paper we prove the existence of a positive and a negative ground state
weak solution for the following class of fractional p&q-Laplacian problems

(−∆)s
pu + (−∆)s

qu + V (x)(|u|p−2u + |u|q−2u) = K(x)f(u) in RN ,

where s ∈ (0, 1), 1 < p < q < N
s
, V : RN→R and K : RN→R are continuous, positive func-

tions, allowed for vanishing behavior at infinity, f is a continuous function with quasicritical
growth and the leading operator (−∆)s

t , with t ∈ {p, q}, is the fractional t-Laplacian operator.
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1. INTRODUCTION

In this work we study the existence of least energy weak solutions for the following
class of fractional p&q-Laplacian problems

(−∆)spu+ (−∆)squ+ V (x)(|u|p−2u+ |u|q−2u) = K(x)f(u) in RN , (1.1)

where s ∈ (0, 1), 1 < p < q < N
s , V : RN→R and K : RN→R are positive functions

and f is a continuous function with quasicritical growth. The main operator (−∆)st ,
with t ∈ {p, q}, denotes the fractional t-Laplacian operator which, up to a normalizing
constant, may be defined as

(−∆)stu(x) := 2 lim
ε→ 0+

∫

RN\Bε(x)

|u(x)− u(y)|t−2(u(x)− u(y))
|x− y|N+st dy (x ∈ RN )
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for any u ∈ C∞c (RN ), where Bε(x) = {y ∈ RN : |x− y| < ε}; we refer to [23] for more
motivations on this operator.

Throughout the paper we will assume that V,K : RN→R are continuous functions
and we say that (V,K) ∈ K if the following hypotheses are satisfied (see [2]):
(V K1) V (x),K(x) > 0 for all x ∈ RN and K ∈ L∞(RN ),
(V K2) if {An}n∈N ⊂ RN is a sequence of Borel sets such that the Lebesgue measure

|An| ≤ R, for all n ∈ N and for some R > 0, then

lim
r→∞

∫

An∩Bc%(0)

K(x) dx = 0,

uniformly in n ∈ N, where Bc%(0) := RN \ B%(0).
Furthermore, one of the following conditions occurs

(V K3) K

V
∈ L∞(RN ),

(V K4) there exists m ∈ (q, q∗s ) such that
K(x)

V (x)
q∗
s−m
q∗
s−p

→ 0 as |x|→∞.

Remark 1.1. We stress that assumption (V K2) is weaker than any one of the
following conditions:
(i) there are r ≥ 1 and ρ ≥ 0 such that K ∈ Lr(Bcρ(0)),
(ii) K(x)→ 0 as |x|→∞,
(iii) K(x) = K1(x) +K2(x), with K1 and K2 fulfilling (i) and (ii) respectively.

Let us point out that the hypotheses on the functions V and K characterize
problem (1.1) as zero mass problem.

Regarding the nonlinearity f , we assume that f ∈ C(R,R) and fulfills the following
growth conditions in the origin and at infinity:
(f1) lim

|t|→ 0

f(t)
|t|p−1 = 0 if (V K3) holds,

(f̃1) lim
|t|→ 0

f(t)
|t|m−1 = 0 if (V K4) holds, with m ∈ (q, q∗s ) defined in (V K4),

(f2) lim
|t|→∞

f(t)
|t|q∗

s−1 = 0.
We suppose that the function f satisfies the Ambrosetti–Rabinowitz condition:
(f3) there exists ϑ ∈ (q, q∗s ) such that

0 < ϑF (t) ≤ f(t)t for all |t| > 0, where F (t) :=
t∫

0

f(τ) dτ,

and furthermore we assume that
(f4) the map t 7→ f(t)

|t|q−1 is strictly increasing for all |t| > 0.
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Remark 1.2. As a model of nonlinearity satisfying the above assumptions we can
take

f(t) = (t+)m, where t+ = max{t, 0},

also, the function

f(t) =
{

log 2(t+)m if t ≤ 1,
t log(1 + t) if t > 1

for some m ∈ (q, q∗s ).

When s = 1, problem (1.1) boils down to a p&q elliptic problem of the type

−∆pu−∆qu+ V (x)(|u|p−2u+ |u|q−2u) = K(x)f(u) in RN . (1.2)

As underlined in [26], this equation appears in a lot of applications such as biophysics,
plasma physics and chemical reaction design. We point out that classical p&q Laplacian
problems in bounded or unbounded domains have been studied by several authors;
see for instance [15,16,30,32,36,37,42] and references therein.

In the past years there has been a great attention on the existence of nontrivial
solutions for (1.2) in the special case p = q = 2, that is the classical nonlinear
Schrödinger equation

−∆u+ V (x)u = K(x)f(u) in RN ,

where the potentials V,K ∈ C(RN ,R) are allowed for vanishing behavior at infinity
and f : R→R is a nonlinearity satisfying suitable growth assumptions in the origin and
at infinity. Such class of zero mass problem has been investigated by many authors
using several variational methods; we refer the interested reader to [1, 4, 17,18,20] and
references therein.

On the other hand, in the last decade nonlinear problems involving nonlocal
operators have received a great interest from the mathematical community thanks to
their intriguing structure and in view of their great application in several contexts
such as obstacle problem, optimization, finance, phase transition, material science,
anomalous diffusion, soft thin films, multiple scattering, quasi-geostrophic flows, water
waves, and so on. For more details we refer to [28,40].

Equation (1.1) with p = q = 2 appears in the study of standing wave solutions
ψ(x, t) = u(x)e−ıωt to the following fractional Schrödinger equation

ı~
∂ψ

∂t
= ~2(−∆)sψ +W (x)ψ − f(|ψ|) in RN ,

where ~ is the Planck constant, W : RN → R is an external potential and f is
a suitable nonlinearity. The fractional Schrödinger equation is one of the most important
objects of the fractional quantum mechanics because it appears in problems involving
nonlinear optics, plasma physics and condensed matter physics. This equation has
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been introduced for the first time by Laskin [35] as a result of expanding the Feynman
path integral, from the Brownian-like to the Lévy-like quantum mechanical paths.
Lately, the study of fractional Schrödinger equations has attracted the attention of
many mathematicians and several papers appeared studying existence, multiplicity,
regularity and asymptotic behavior of solutions to fractional Schrödinger equations
assuming different conditions on the potential and considering nonlinearities with
subcritical or critical growth; see [7, 9, 13,21,29,33,34,39,43].

Recently, a great attention has been devoted to the study of fractional p-Laplacian
operator because both nonlocal and nonlinear phenomena appear in it. We refer the
interested reader to [6, 10, 12,27, 31,38, 41] for some interesting existence, multiplicity
and regularity results involving this nonlocal operator.

Differently from the local case, only few papers deal with fractional p&q-Laplacian
problems. Chen and Bao [25] obtained the existence, nonexistence and multiplicity of
solutions to the following fractional p&q-Laplacian equation

(−∆)spu+ a(x)|u|p−2u+ (−∆)squ+ b(x)|u|q−2u+ µ(x)|u|r−2u

= λh(x)|u|m−2u in RN

where λ ∈ R, 0 < s < 1 < q < p, r > 1, sp < N , the functions a(x), b(x), µ(x) and
h(x) are nonnegative in RN , and the following three cases on p, q, r,m are considered:
p < m < r < p∗s, max{p, r} < m < p∗s, and 1 < m < q < r < p∗s. Using variational
arguments and concentration-compactness lemma, in [8] the author established the
existence of a nontrivial non-negative solution to

(−∆)spu+ (−∆)squ+ |u|p−2u+ |u|q−2u = λh(x)f(u) + |u|q∗
s−2u in RN ,

where s ∈ (0, 1), 1 < p < q < N
s , λ > 0 is a parameter, h is a nontrivial bounded

perturbation and f is a superlinear continuous function with subcritical growth.
Subsequently, [19] obtained the existence of infinitely many nontrivial solutions for
the class of (p, q) fractional elliptic equations involving concave-critical nonlinearities
in bounded domains. Very recently, in [3] the authors studied the following class of
problems

(−∆)spu+ (−∆)squ+ V (ε x)(|u|p−2u+ |u|q−2u) = f(u) in RN , (1.3)

with s ∈ (0, 1) and 1 < p < q < N
s . Under suitable assumptions on the potential

and the nonlinearity, but without requiring the Ambrosetti–Rabinowitz condition, the
authors proved the existence of a ground state solution to (1.3) that concentrates
around a minimum point of the potential V . Furthermore, a multiplicity result is
established by using the Lyustenick–Schnirelmann category theory and the boundedness
of solutions to (1.3). We also mention [11,14] for problems in bounded domains.

Motivated by the above papers, in this work we are interested in the existence
of nontrivial solutions for a fractional p&q-Laplacian problem involving potentials
allowed for vanishing behavior at infinity.
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Our main result can be stated as follows:

Theorem 1.3. Assume that (V,K) ∈ K and f satisfies (f1) or (f̃1) and (f2)–(f4).
Then problem (1.1) possesses a positive and a negative ground state weak solution.

It is worth pointing out that problem (1.1) involves the fractional t-Laplacian
(−∆)st , with s ∈ (0, 1) and t ∈ {p, q}, which is not linear when t 6= 2, so we can
not benefit of the s-harmonic extension due to Caffarelli-Silvestre [24]. Furthermore,
a more accurate inspection will be needed with respect to the classical framework
due to the non-Hilbertian structure of the involved fractional Sobolev spaces W s,t,
and some ideas contained in [9, 13,16,34] will play a fundamental role to achieve the
desired result. The proof is based on variational arguments and a key role is played by
the mountain pass theorem [5].

The paper is organized as follows: in Section 2 we recall some useful lemmas which
will be used along the paper. In Section 3 we show the existence of a positive and
a negative ground state weak solution by means of mountain pass theorem.

2. VARIATIONAL FRAMEWORK

Let 1 ≤ r ≤ ∞ and A ⊂ RN . We denote by |u|Lr(A) the Lr(A)-norm of u : RN→R
belonging to Lr(A). When A = RN , we will write |u|r.

For s ∈ (0, 1), let Ds,r(RN ) be the closure of C∞c (RN ) with respect to

[u]rs,r =
∫∫

R2N

|u(x)− u(y)|r
|x− y|N+sr dxdy.

We defineW s,r(RN ) as the set of functions u ∈ Lr(RN ) such that [u]s,r <∞, endowed
with the norm

‖u‖rs,r := [u]rs,r + |u|rr.

Let us introduce the space

X =



u ∈ D

s,p(RN ) ∩ Ds,q(RN ) :
∫

RN

V (x)(|u|p + |u|q) dx <∞





endowed with the norm

‖u‖ := ‖u‖V,p + ‖u‖V,q,

where

‖u‖tV,t := [u]ts,t +
∫

RN

V (x)|u|t dx, t ∈ {p, q}.
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We recall the following embedding:
Theorem 2.1. Let s ∈ (0, 1) and N > sp. Then there exists a constant S∗ > 0 such
that for any u ∈ Ds,p(RN )

|u|pp∗
s
≤ S−1

∗ [u]ps,p.

Moreover, W s,p(RN ) is continuously embedded in Lr(RN ) for any r ∈ [p, p∗s] and
compactly in Lr(BR(0)) for all R > 0 and for any r ∈ [1, p∗s).

Let us define the Lebesgue space

LrK(RN ) =



u : RN→R : u is measurable and

∫

RN

K(x)|u|r dx <∞





endowed with the norm

‖u‖Lr
K

(RN ) =



∫

RN

K(x)|u|r dx




1
r

.

Now we prove the following continuous and compactness results, whose proofs can
be obtained adapting the arguments in [2, 9]. For the reader’s convenience we give the
proofs.
Lemma 2.2. Assume that (V,K) ∈ K.
(i) If (V K3) holds true, then X is continuously embedded in LrK(RN ) for every

r ∈ [q, q∗s ].
(ii) If (V K4) holds, then X is continuously embedded in LmK(RN ).

Proof. (i) Let r ∈ (q, q∗s ) and let ν = q∗
s−r
q∗
s−p . Then, using Hölder and Sobolev inequality,

and recalling that K ∈ L∞(RN ) and K
V ∈ L∞(RN ), we get

‖u‖rLr
K

(RN ) =
∫

RN

K(x)|u|νp|u|(1−ν)q∗
s dx

≤



∫

RN

|K(x)| 1ν |u|p dx



ν 

∫

RN

|u|q∗
s dx




1−ν

≤
(

sup
x∈RN

|K(x)|
|V (x)|ν

)

∫

RN

V (x)|u|p dx



ν 

∫

RN

|u|q∗
s dx




1−ν

≤ C
(

sup
x∈RN

|K(x)|
|V (x)|ν

)
‖u‖νp‖u‖(1−ν)q∗

s

= C

(
sup
x∈RN

|K(x)|
|V (x)|ν

)
‖u‖r,

from which we deduce the thesis.
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(ii) Let us define ν = q∗
s−m
q∗
s−p , so that m = νp+ (1− ν)q∗s . Then, using Hölder and

Sobolev inequality and the fact that K(x)

V (x)
q∗
s−m
q∗
s−p

∈ L∞(RN ), we can infer

‖u‖mLm
K

(RN ) ≤



∫

RN

|K(x)| 1ν |u|p dx



ν 

∫

RN

|u|q∗
s dx




1−ν

≤
(

sup
x∈RN

|K(x)|
|V (x)|ν

)

∫

RN

V (x)|u|p dx



ν 

∫

RN

|u|q∗
s dx




1−ν

≤ C
(

sup
x∈RN

|K(x)|
|V (x)|ν

)
‖u‖νp‖u‖(1−ν)q∗

s = C

(
sup
x∈RN

|K(x)|
|V (x)|ν

)
‖u‖m.

Lemma 2.3. Assume that (V,K) ∈ K.
(i) If (V K3) holds true, then X is compactly embedded in LrK(RN ) for every

r ∈ (q, q∗s ).
(ii) If (V K4) holds, then X is compactly embedded in LmK(RN ).
Proof. (i) Our aim is to prove that

un→u in LrK(RN ), for any r ∈ (q, q∗s ),

that is
lim
n→∞

∫

RN

K(x)|un|r dx =
∫

RN

K(x)|u|r dx.

Note that, for R > 0
∫

RN

K(x)|un|r dx =
∫

BR(0)

K(x)|un|r dx+
∫

Bc
R

(0)

K(x)|un|r dx,

and recalling that r ∈ (q, q∗s ), K ∈ C(RN ,R) and using Sobolev embedding, we have

lim
n→∞

∫

BR(0)

K(x)|un|r dx =
∫

BR(0)

K(x)|u|r dx.

Now, let ε > 0. Then we can find ξ0, ξ1 > 0 with ξ0 < ξ1 and a positive constant C
such that for all ξ ∈ R

K(x)|ξ|r ≤ εC
[
V (x)|ξ|q + |ξ|q∗

s

]
+ CK(x)χ[ξ0,ξ1](|ξ|)|ξ|q

∗
s . (2.1)

Let us define

A =
{
x ∈ RN : ξ0 ≤ |u(x)| ≤ ξ1

}
.
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Then, integrating (2.1) over BcR(0) we have
∫

Bc
R

(0)

K(x)|u|r dx ≤ εC
∫

Bc
R

(0)

[
V (x)|u|q + |u|q∗

s

]
dx+ C

∫

Bc
R

(0)∩A

K(x)|u|q∗
s

≤ εCL(u) + Cξ
q∗
s

1

∫

Bc
R

(0)∩A

K(x) dx, (2.2)

where

L(u) =
∫

Bc
R

(0)

[
V (x)|u|q + |u|q∗

s

]
dx.

Assume that {un}n∈N ⊂ X is a sequence such that un⇀u in X. Then, {L(un)}n∈N is
bounded above by a positive constant, say M . Especially,

∫

RN

|un|q
∗
s dx ≤M for any n ∈ N.

Denoting by An =
{
x ∈ RN : ξ0 ≤ |un(x)| ≤ ξ1

}
, we have that supn∈N |An| < ∞

in view of

ξ
q∗
s

0 |An| ≤
∫

An

|un|q
∗
s dx ≤M, for any n ∈ N.

Using assumption (V K2) there exists R > 0 large enough such that
∫

Bc
R

(0)∩An

K(x) dx ≤ ε

ξ
q∗
s

1
, for any n ∈ N. (2.3)

Combining (2.2) with (2.3) we get
∫

Bc
R

(0)

K(x)|u|r dx ≤ (CM + C) ε .

(ii) We prove that

lim
n→∞

∫

RN

K(x)|un|m dx =
∫

RN

K(x)|u|m dx.

Note that, for R > 0
∫

RN

K(x)|un|m dx =
∫

BR(0)

K(x)|un|m dx+
∫

Bc
R

(0)

K(x)|un|m dx,



Fractional p&q-Laplacian problems with potentials vanishing at infinity 101

and recalling that m ∈ (q, q∗s), K ∈ C(RN ,R) and using the Sobolev embedding, we
have

lim
n→∞

∫

BR(0)

K(x)|un|m dx =
∫

BR(0)

K(x)|u|m dx. (2.4)

Fixed x ∈ RN , let us consider the function

g(ξ) := V (x)
ξm−p

+ ξq
∗
s−m for every ξ > 0.

Then we have that g′(ξ) = 0 for ξ =
(
m−p
q∗
s−mV (x)

) 1
q∗
s−p =: ξ2, and g′(ξ) > 0 for ξ > ξ2.

Hence g(ξ) has its minimum value in

CmV (x)
q∗
s−m
q∗
s−p , Cm :=

(
m− p
q∗s −m

) q∗
s−m
q∗
s−p

(
q∗s − p
m− p

)
.

This combined with (V K4) implies that for any ε > 0 there is a radius R > 0 sufficiently
large such that

K(x)|ξ|m ≤ εC ′m(V (x)|ξ|p + |ξ|q∗
s ). (2.5)

Integrating (2.5) over BcR(0) we get, for all u ∈ X,
∫

Bc
R

(0)

K(x)|u|m dx ≤ εC ′m
∫

Bc
R

(0)

(V (x)|u|p + |u|q∗
s ) dx = εC ′m

(
‖u‖p + |u|q

∗
s
q∗
s

)
. (2.6)

Now, if {un}n∈N ⊂ X is a sequence such that un⇀u in X, then by (2.6) we have
∫

Bc
R

(0)

K(x)|u|m dx ≤ εC ′′m for any n ∈ N. (2.7)

Gathering (2.4) and (2.7) we get the thesis.

The last lemma of this section is a compactness result related to the nonlinearity.

Lemma 2.4. Assume that (V,K) ∈ K and f verifies (f1)–(f2) or (f̃1)–(f2). If
{un}n∈N is a sequence such that un⇀u in X, then

∫

RN

K(x)F (un) dx→
∫

RN

K(x)F (u) dx

and
∫

RN

K(x)f(un)un dx→
∫

RN

K(x)f(u)u dx.
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Proof. We prove that
∫

RN

K(x)f(un)un dx→
∫

RN

K(x)f(u)u dx as n→∞.

We note that
∫

RN

K(x)f(un)un dx =
∫

Br(0)

K(x)f(un)un dx+
∫

Bcr(0)

K(x)f(un)un dx. (2.8)

Concerning the first integral in (2.8) we can apply the Strauss Lemma to deduce that
∫

Br(0)

K(x)f(un)un dx→
∫

Br(0)

K(x)f(u)u dx. (2.9)

Now we consider the second integral in (2.8).
Assume that (V K3) is in force and let us observe that by (f1)–(f2), fixed r ∈ (q, q∗s )

and given ε > 0, we can find ξ0, ξ1 > 0 with ξ0 < ξ1 and a constant C > 0 such that

|K(x)f(ξ)ξ| ≤ εC
(
V (x)|ξ|p + |ξ|q∗

s

)
+ CK(x)χ[ξ0,ξ1](|ξ|)|ξ|r. (2.10)

We point out that since {un}n∈N ⊂ X is bounded, we can infer that
∫

RN

V (x)|un|p dx ≤ C ′ and
∫

RN

|un|q
∗
s dx ≤ C ′ for all n ∈ N. (2.11)

Now, as in the proof of Lemma 2.3 (i), we can demonstrate that
∫

Bcr(0)

K(x) dx ≤ ε

ξr1
for all n ∈ N,

which together with (2.10) and (2.11) implies that
∫

Bcr(0)

K(x)f(un)un dx ≤ C ε . (2.12)

Combining (2.9) and (2.12) we conclude the proof.
Next, assume that (V K4) holds true. Then, as in Lemma 2.3, using (2.5) and

assumptions (f̃1)–(f2), there exist C, ξ0, ξ1 > 0 such that

K(x)|f(ξ)ξ| ≤ εC ′m
(
V (x)|ξ|p + |ξ|q∗

s

)

for every ξ ∈ A, where A = {ξ ∈ R : |ξ| < ξ0 or |ξ| > ξ1}, and |x| > R.
Gathering the boundedness of {un}n∈N ⊂ X and the estimate in (2.7) we get the

desired thesis.
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3. EXISTENCE OF SOLUTIONS

To study (1.1) we look for critical points of the functional I : X→R given by

I(u) = 1
p
‖u‖pV,p + 1

q
‖u‖qV,q −

∫

RN

K(x)F (u) dx.

It is easy to check that I ∈ C1(X,R) and its differential is given by

〈I ′(u), v〉 =
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))
|x− y|N+sp dxdy

+
∫∫

R2N

|u(x)− u(y)|q−2(u(x)− u(y))(v(x)− v(y))
|x− y|N+sq dxdy

+
∫

RN

V (x)|u|p−2uv dx+
∫

RN

V (x)|u|q−2uv dx−
∫

RN

K(x)f(u)v dx

for any u, v ∈ X. Since we aim to prove the existence of positive solutions, we further
assume that
(f5) f(t) = 0 for all t ≤ 0.

Now we prove that I possesses a mountain pass geometry [5].
Lemma 3.1. The functional I satisfies the following conditions:
(i) there exist α, ρ > 0 such that I(u) ≥ α with ‖u‖ = ρ,
(ii) there exists e ∈ X with ‖e‖ > ρ such that I(e) < 0.
Proof. (i) Assume that (V K3) holds true. From (f1)–(f2) it follows that fixed ε > 0
there exists Cε > 0 such that

|F (t)| ≤ ε

p
|t|p + Cε

q∗s
|t|q∗

s .

Thus we have

I(u) ≥ 1
p
‖u‖pV,p + 1

q
‖u‖qV,q −

ε

p

∫

RN

K(x)|u|p dx− Cε
q∗s

∫

RN

K(x)|u|q∗
s dx

≥ 1
p
‖u‖pV,p + 1

q
‖u‖qV,q −

ε

p

∣∣∣∣
K

V

∣∣∣∣
∞

∫

RN

V (x)|u|p dx− Cε
q∗s
|K|∞|u|q

∗
s
q∗
s
.

Choosing ‖u‖ = ρ ∈ (0, 1), taking into account that 1 < p < q and using the Sobolev
embedding we can infer that

I(u) ≥ C1

(
‖u‖pV,p + ‖u‖qV,q

)
− C2‖u‖q

∗
s

≥ C1

(
‖u‖qV,p + ‖u‖qV,q

)
− C2‖u‖q

∗
s

≥ C̄1‖u‖q − C2‖u‖q
∗
s .

As a consequence, there exists α > 0 such that I(u) ≥ α and ‖u‖ = ρ.
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Now, we assume that (V K4) is true. From (f̃1)–(f2) it follows that fixed ε > 0
there exists Cε > 0 such that

|F (t)| ≤ ε

m
|t|m + Cε

q∗s
|t|q∗

s .

Thus we have

I(u) ≥ 1
p
‖u‖pV,p + 1

q
‖u‖qV,q −

ε

m

∫

RN

K(x)|u|m dx− Cε
q∗s

∫

RN

K(x)|u|q∗
s dx

which combined with (2.5) yields

I(u) ≥ 1
p
‖u‖pV,p + 1

q
‖u‖qV,q −

ε

m

∫

Br

K(x)|u|m dx− ε

m

∫

RN

V (x)|u|p dx

−
(
ε

m
+ Cε
q∗s
|K|∞

)
|u|q

∗
s
q∗
s

≥ Cp‖u‖pV,p + Cq‖u‖qV,q −
ε

m
|K|∞|u|mLm(Br) − C|u|

q∗
s
q∗
s
.

Choosing ‖u‖ = ρ ∈ (0, 1), taking into account that 1 < p < q and using the Sobolev
embedding we can infer that

I(u) ≥ C1

(
‖u‖pV,p + ‖u‖qV,q

)
− C2‖u‖m − C3‖u‖q

∗
s

≥ C1

(
‖u‖qV,p + ‖u‖qV,q

)
− C2‖u‖m − C3‖u‖q

∗
s

≥ C̄1‖u‖q − C2‖u‖m − C3‖u‖q
∗
s .

(ii) From (f3) we have that there exist C1, C2 > 0 such that

F (t) ≥ C1t
ϑ − C2 for all t > 0.

Hence, for any ϕ ∈ C∞c (RN ) such that ϕ ≥ 0 in RN and ϕ 6≡ 0, we have

I(tϕ) ≤ tp

p
‖ϕ‖pV,p + tq

q
‖ϕ‖qV,q − C1t

ϑ

∫

suppϕ

K(x)|ϕ|ϑ dx+ C2

∫

suppϕ

K(x) dx

≤ tp

p
‖ϕ‖pV,p + tq

q
‖ϕ‖qV,q − C1t

ϑ

∫

suppϕ

K(x)|ϕ|ϑ dx+ C2|K|∞| suppϕ|,

for any t > 0. Since ϑ ∈ (q, q∗s ), we get I(tϕ)→−∞ as t→+∞.

Hence, there exists a Palais–Smale sequence {un}n∈N ⊂ X ([44]) such that

I(un)→ c and I ′(un)→ 0 in X′,

where

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), Γ = {v ∈ C([0, 1],X) : γ(0) = 0 and γ(1) = e}.

Let us observe that thanks to (f5) we can assume that un is nonnegative for all n ∈ N.
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Lemma 3.2. If {un}n∈N is a Palais–Smale sequence for I at the level c, then {un}n∈N
is bounded in X.
Proof. Using the fact that {un}n∈N is a Palais–Smale sequence for I at the level c,
and assumption (f3), we have

C(1 + ‖un‖)

≥ I(un)− 1
ϑ
〈I ′(un), un〉

=
(

1
p
− 1
ϑ

)
‖un‖pV,p +

(
1
q
− 1
ϑ

)
‖un‖qV,q + 1

ϑ

∫

RN

K(x) (f(un)un − ϑF (un)) dx

≥
(

1
q
− 1
ϑ

)
(‖un‖pV,p + ‖un‖qV,q).

Now, let us assume by contradiction that ‖un‖→∞. Then we have the following cases:
(1) ‖un‖V,p→∞ and ‖un‖V,q→∞,
(2) ‖un‖V,p→∞ and ‖un‖V,q is bounded,
(3) ‖un‖V,p is bounded and ‖un‖V,q→∞.

In the first case, let us note that from p < q and for n sufficiently large, we have
that ‖un‖q−pV,q ≥ 1, that is ‖un‖qV,q ≥ ‖un‖pV,q, hence

C(1 + ‖un‖) ≥
(

1
q
− 1
ϑ

)
(‖un‖pV,p + ‖un‖pV,q)

≥ C1(‖un‖V,p + ‖un‖V,q)p = C1‖un‖p,
which gives a contradiction.

For what concerns the case (2), we can see that

C (1 + ‖un‖V,p + ‖un‖V,q) ≥
(

1
q
− 1
ϑ

)
‖un‖pV,p

implies

C

(
1

‖un‖pV,p
+ 1
‖un‖p−1

V,p

+ ‖un‖V,q‖un‖pV,p

)
≥
(

1
q
− 1
ϑ

)
,

and letting n→∞, we get 0 ≥
(

1
q − 1

ϑ

)
> 0, which yields a contradiction.

We can proceed similarly for the case (3). Hence we have that {un}n∈N is bounded
in X.

Next we prove that I satisfies the Palais–Smale condition.
Lemma 3.3. Suppose that (V,K) ∈ K and f satisfies (f1) or (f̃1) and (f2)–(f4).
Then, every sequence {un}n∈N in X such that

I(un)→ c and I ′(un)→ 0 as n→∞,
converges in X up to a subsequence.



106 Teresa Isernia

Proof. From Lemma 3.2 we have that up to a subsequence there exists u ∈ X such
that un⇀u in X and un→u in Lrloc(RN ) for any r ∈ [1, q∗s). Now, we aim to prove
the strong convergence of un to u in X.

Set t ∈ {p, q}. Let us observe that the sequence
{ |un(x)− un(y)|t−2(un(x)− un(y))

|x− y|(N+st)(1− 1
t )

}

n∈N
is bounded in L t

t−1 (R2N )

and

|un(x)− un(y)|t−2(un(x)− un(y))
|x− y|(N+st)(1− 1

t ) → |u(x)− u(y)|t−2(u(x)− u(y))
|x− y|(N+st)(1− 1

t ) a.e. in R2N .

Hence, up to a subsequence, we may assume that for any h ∈ Lt(R2N ) it holds
∫∫

R2N

|un(x)− un(y)|t−2(un(x)− un(y))
|x− y|(N+st)(1− 1

t ) h(x, y) dxdy

→
∫∫

R2N

|u(x)− u(y)|t−2(u(x)− u(y))
|x− y|(N+st)(1− 1

t ) h(x, y) dxdy.
(3.1)

Let φ ∈ C∞c (RN ) and set

h(x, y) := φ(x)− φ(y)
|x− y|N+st

t

. (3.2)

Then, h ∈ Lt(R2N ), and using (3.2) in (3.1) we obtain that
∫∫

R2N

|un(x)− un(y)|t−2(un(x)− un(y))(φ(x)− φ(y))
|x− y|N+st dxdy

→
∫∫

R2N

|u(x)− u(y)|t−2(u(x)− u(y))(φ(x)− φ(y))
|x− y|N+st dxdy.

Now, taking into account that
∫

RN

V (x)|un|t−2unϕdx→
∫

RN

V (x)|u|t−2uϕdx

and using Lemma 2.4 and 〈I ′(un), φ〉 = on(1), we can infer that 〈I ′(u), φ〉 = 0 for
any φ ∈ C∞c (RN ). Since C∞c (RN ) is dense in W s,p(RN ), we deduce that u is a critical
point of I. In particular, 〈I ′(u), u〉 = 0.

Now, combining 〈I ′(un), un〉 = on(1) with 〈I ′(u), u〉 = 0, we get

‖un‖pV,p + ‖un‖qV,q −
∫

RN

K(x)f(un)un dx = on(1)
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and

‖u‖pV,p + ‖u‖qV,q −
∫

RN

K(x)f(u)u dx = 0.

Using Lemma 2.4 we infer

‖un‖pV,p + ‖un‖qV,q = ‖u‖pV,p + ‖u‖qV,q + on(1). (3.3)

In the light of the Brezis–Lieb Lemma [22] we know that

‖un − u‖pV,p = ‖un‖pV,p − ‖u‖pV,p + on(1)

and
‖un − u‖qV,q = ‖un‖qV,q − ‖u‖qV,q + on(1),

which together with (3.3) yields

‖un − u‖pV,p + ‖un − u‖qV,q = on(1).

Hence ‖un − u‖ = on(1). This ends the proof of lemma.

We conclude this section giving the proof of the main result.

Proof of Theorem 1.3. In view of Lemma 3.1, Lemma 3.2 and Lemma 3.3 we can
apply the mountain pass theorem [5] to deduce that there exists u ∈ X such that
I(u) = c and I ′(u) = 0.

Now, let u− := min{u, 0}. Recalling that for any x, y ∈ R and t > 1 it holds

|x− y|t−2(x− y)(x− − y−) ≥ |x− − y−|t,

and using 〈I ′(u), u−〉 = 0 and the fact that f(t) = 0 for t ≤ 0, we have

‖u−‖pV,p + ‖u−‖qV,q ≤ 〈I ′(u), u−〉 = 0

which implies that u− = 0, that is u ≥ 0 in RN and u 6≡ 0.
Now, let us suppose that f(t) = 0 for t ≥ 0. Then, using the same arguments we

can prove the existence of u ∈ X such that I(u) = c and I ′(u) = 0. Moreover, u ≤ 0
for all x ∈ RN and u 6≡ 0.
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