PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantifying the influence of variations in rock mass properties on stope stability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Variations in rock mass properties are well-established in rock mechanics and underground mining. The literature is replete with methods of assessing them and determining values that are used in design or numerical analysis. In this paper, a simplified 3D model is constructed for a tabular orebody in the Canadian Shield and instability is quantified using the ”brittle shear ratio” criterion to calculate the volume at risk. A 1-4-7 stope pillar sequence is implemented on four active levels, and three variations in the properties of the host formation are assessed. It is observed that the locations of ore at risk follow the formations of stope pillars and are then transferred to the sill pillars above and below. Instability in the footwall and the hanging wall is observed to be lesser in volume but remains persistent. With the allocation of weak properties to the host rock, at-risk volumes increase in the orebody, footwall, and hanging wall, and the reverse trend occurs with strong greenstone properties. It is concluded that the stress increase in the orebody is due to transfers from the weaker host rock, while that in the greenstone formation is due to the use of a lower compressive strength value.
Rocznik
Strony
334--345
Opis fizyczny
Bibliogr. 63 poz.
Twórcy
  • McGill University, Department of Mining and Materials Engineering, Canada
autor
  • McGill University, Department of Mining and Materials Engineering, Canada
Bibliografia
  • [1] Potvin Y, Hudyma M. Open stope mining practices in Canada. In: Proceedings of the 1989 CIM annual general meeting. Quebec City; 1989. QC, Canada.
  • [2] Potvin Y, Hudyma M. Open stope mining in Canada. In: Proceedings of MassMin 2000; 2000. p. 661-74. Brisbane, QLD, Australia;.
  • [3] Villaescusa E. Global extraction sequence in sublevel stoping. In: Proceedings of the 12th MPES conference; 2003. p. 9-17. Kalgoorlie, WA, Australia.
  • [4] Pakalnis RT, Hughes PB. Sublevel stoping. In: Darling P, editor. SME mining engineering handbook. 3rd ed. Englewood, CO, USA: SME; 2011.
  • [5] Castro LAM, Bewick RP, Carter TG. An overview of numerical modelling applied to deep mining. In: Azevedo R, editor. Innovative numerical modelling in geomechanics. London, UK: CRC Press, Taylor & Francis Group; 2012.
  • [6] Board M, Brummer R, Seldon S. Use of numerical modeling for mine design and evaluation. In: Hustrulid WA, Bullock RL, editors. Underground mining methods: engineering fundamentals and international case studies. Littleton, CO, USA: SME; 2001.
  • [7] Wiles TD. Reliability of numerical modelling predictions. Int J Rock Mech Min Sci 2006;43(3):454-72.
  • [8] Martin CD, Kaiser PK, McCreath DR. Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Can Geotech J 1999;36(1):136-51.
  • [9] Diederichs MS. Instability of hard rock masses: the role of tensile damage and relaxation. Waterloo: University of Waterloo; 1999. PhD thesis.
  • [10] Kaiser PK, Diederichs MS, Martin CD, Sharpe J, Steiner W. Underground works in hard rock tunnelling and mining. In: Proceedings of the ISRM international symposium; 2000. p. 841-926. Melbourne, VIC, Australia.
  • [11] Kim BH. Kaiser PK Rock strength characterization for excavations in brittle failing rock. In: Proceedings of the 3rd Canada-US rock mechanics symposium (paper 3948). Toronto, ON: Canada; 2009.
  • [12] Shnorhokian S, Mitri HS, Moreau-Verlaan L. Stability assessment of stope sequence scenarios in a diminishing ore pillar. Int J Rock Mech Min Sci 2015;74:103-18.
  • [13] Heidarzadeh S, Saeidi A, Rouleau A. Use of probabilistic numerical modelling to evaluate the effect of geomechanical parameter variability on the probability of open-stope failure: a case study of the Niobec Mine, Quebec (Canada). Rock Mech Rock Eng 2020;53:1411-31.
  • [14] Heidarzadeh S, Saeidi A, Rouleau A. Evaluation of the effect of geometrical parameters on stope probability of failure in the open stoping method using numerical modeling. Int J Min Sci Technol 2019;29:399-408.
  • [15] Pelley CW. A study of sequencing strategy for steep, tabular, hardrock orebodies. PhD thesis. Montreal: McGill University; 1994.
  • [16] Manchuk J. Stope design and sequencing. Edmonton: MS thesis. University of Alberta; 2007.
  • [17] Bewick RP. Shear rupture of massive brittle rock under constant normal stress and stiffness boundary conditions. Toronto: PhD thesis. University of Toronto; 2013.
  • [18] Morissette P, Hadjigeorgiou J, Punkkinen AR, Chinnasane D, Sampson-Forsythe A. The influence of mining sequence and ground support practice on the frequency and severity of rockbursts in seismically active mines of the Sudbury Basin. J S Afr Inst Min Metall 2017;117:47-58.
  • [19] Bouzeran L, Pierce M, Jalbout A, Ruest M. Stoping sequence optimisation at Eleonore Mine based on stress analysis through horizon scale numerical modelling. In: Proceedings of the 9th deep and high stress mining; 2019. p. 253-66. Johannesburg, South Africa.
  • [20] Kabwe E. Mining sequence deformation and failure behavior analysis in the hanging wall and orebody rock formations; a continuum approach. Geotech Geol Eng 2017;35(4):1453-73.
  • [21] Handley MF, de Lange JAJ, Essrich F, Banning JA. A review of sequential grid mining method employed at Elandsrand Gold Mine. J S Afr Inst Min Metall 2000;100(3): 157-68.
  • [22] Jooste Y, Malan DF. Rock engineering aspects of a modified mining sequence in a dip pillar layout at a deep gold mine. J S Afr Inst Min Metall 2015;115:1097-112.
  • [23] Neindorf LB, Karunatillake GSB. George Fisher Mine - feasibility and construction. In: Proceedings of MassMin 2000; 2000. p. 601-9. Brisbane, QLD, Australia.
  • [24] Cepuritis PM, Villaescusa E. Back analysis techniques for assessing open stope performance. In: Proceedings of the Australian mining technology conference. NSW, Australia: Hunter Valley; 2006. p. 261-71.
  • [25] Cepuritis PM, Villaescusa E, Lachenicht R. Back analysis and performance of block A long hole open stopes - Kanowna belle gold mine. In: Proceedings of the 1st Canada-US rock mechanics symposium. Vancouver, BC: Canada; 2007. p. 1431-45.
  • [26] Grant D, De Kruijff S. Mount Isa mines - 1100 orebody, 35 years on. In: Proceedings of MassMin 2000; 2000. p. 591-600. Brisbane, QLD, Australia.
  • [27] Beck DA, Sandy MP. Mine sequencing for high recovery in Western Australian mines. In: Proceedings of the 12th MPES conference; 2003. p. 137-44. Kalgoorlie, WA, Australia.
  • [28] Mgumbwa J, Page A, Human L, Dunn MJ. Managing a change in rock mass response to mining at the Frog's Leg under-ground mine. In: Proceedings of the 8th deep and high stress mining; 2017. p. 917-36. Perth, WA, Australia.
  • [29] Sjöberg J, Perman F, Quinteiro C, Malmgren L, Dahnér-Lindkvist C, Boskovic M. Numerical analysis of alternative mining sequences to minimise potential for fault slip rock-bursting. Min Technol 2012;121(4):226-35.
  • [30] Kim K, Gao H. Probabilistic approaches to estimating vari- ation in the mechanical properties of rock masses. Int J Rock Mech Min Sci 1995;32(2):111-20.
  • [31] Sari M. The stochastic assessment of strength and deformability characteristics for a pyroclastic rock mass. Int J Rock Mech Min Sci 2009;46:613-26.
  • [32] Sari M, Karpuz C, Ayday C. Estimating rock mass properties using Monte Carlo simulation: Ankara andesites. Comput Geosci 2010;36:959-69.
  • [33] Idris M, Basarir H, Nordlund E, Wettainen T. The probabilistic estimation of rock masses properties in Malmberget mine, Sweden. Electron J Geotech Eng 2013;18:269-87.
  • [34] Wang Y, Aladejare AE. Evaluating variability and uncertainty of geological strength index at a specific site. Rock Mech Rock Eng 2016;49:3559-73.
  • [35] Hoek E. Reliability of the HoekeBrown estimates of rock mass properties and their impact on design. Int J Rock Mech Min Sci 1998;35:63-8.
  • [36] Marinos P, Hoek E, Marinos V. Variability of the engineering properties of rock masses quantified by the geological strength index: the case of ophiolites with special emphasis on tunnelling. Bull Eng Geol Environ 2006;65:129-42.
  • [37] Sari M. Incorporating variability and/or uncertainty of rock mass properties into GSI and RMi systems using Monte Carlo method. In: Lollino G, Giordan D, Thuro K, Carranza-Torres C, Wu F, Marinos P, et al., editors. Engineering geology for society and territory. Applied geology for major engineering projects, Part XIV, vol. 6. Switzerland: Springer International Publishing; 2015. Paper 152.
  • [38] Morelli GL. Variability of the GSI index estimated from different quantitative methods. Geotech Geol Eng 2015;33:983-95.
  • [39] Barla G, Scavia C, Antonellis M, Garascio M. Characterization of rock mass by geostatistical analysis at the Masua Mine. In: Proceedings of the 6th ISRM congress. Montreal, QC: Canada; 1987. p. 777-86.
  • [40] Cai M. Rock masses characterization and rock property variability considerations for tunnel and cavern design. Rock Mech Rock Eng 2011;44:379-99.
  • [41] Mazraehli M, Zare S. An application of uncertainty analysis to rock mass properties characterization at porphyry copper mines. Bull Eng Geol Environ 2020;79:3721-39.
  • [42] Esmaieli K, Hadjigeorgiou J, Grenon M. Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine. Int J Rock Mech Min Sci 2010;47:915-26.
  • [43] Sari M. Determination of representative elementary volume (REV) for jointed rock masses exhibiting scale-dependent behavior: a numerical investigation. Int J Geo-Engineering 2021;12:34.
  • [44] Heidarzadeh S, Saeidi A, Lavoie C, Rouleau A. Geo- mechanical characterization of a heterogenous rock mass using geological and laboratory test results: a case study of the Niobec Mine, Quebec (Canada). SN Appl Sci 2021;3(640).
  • [45] Harrison JP. Challenges in determining rock mass properties for reliability-based design. In: Proceedings of the 7th inter- national symposium on geotechnical safety and risk; 2019. p. 35-44. Taipei, Taiwan.
  • [46] Fattahi H, Varmazyari Z, Babanouri N. Feasibility of Monte Carlo simulation for predicting deformation modulus of rock mass. Tunn Undergr Space Technol 2019;89:151-6.
  • [47] Aladejare AE, Wang Y. Estimation of rock mass deformation modulus using indirect information from multiple sources. Tunn Undergr Space Technol 2019;85:76-83.
  • [48] Tiwari G, Pandit B, Madhavi Latha G, Babu GLS. Probabilistic analysis of tunnels considering uncertainty in peak and post peak strength parameters. Tunn Undergr Space Technol 2017;70:375-87.
  • [49] Behnia M, Cheraghi Seifabad M. Stability analysis and optimization of the support system of an underground power-house cavern considering rock mass variability. Environ Earth Sci 2018;77:645.
  • [50] Aladejare AE, Wang Y. Evaluation of rock property variability. Georisk 2017;11(1):22-41.
  • [51] Małkowski P, Niedbalski Z, Balarabe T. A statistical analysis of geomechanical data and its effect on rock mass numerical modeling: a case study. Int J Coal Sci Tech 2021;8(2):312-23.
  • [52] Stavropoulou M, Exadactylos G, Saratsis G. A combined three-dimensional geological-geostatistical-numerical model of underground excavations in rock. Rock Mech Rock Eng 2007;40(3):213-43.
  • [53] Jendrys M, Duzy S, Dyduch G. Analysis of stress-strain states in the vicinity of mining excavations in a rock mass with variable mechanical properties. Energies 2020;13: 5567.
  • [54] Idris MA, Saiang D, Nordlund E. Numerical analyses of the effects of rock mass property variability on open stope stability. In: Proceedings of the 45th US rock mechanics/geomechanics symposium - ARMA (Paper 11-297). San Francisco, CA, United States.
  • [55] Idris MA, Saiang D, Nordlund E. Consideration of the rock mass property variability in numerical modelling of open. In: Bergmekanikdag; 2012. p. 111-23. Stockholm, Sweden.
  • [56] Idris MA, Saiang D, Nordlund E. Probabilistic analysis of open stope stability using numerical modelling. Int J Min Miner Eng 2011;3(3):194-219.
  • [57] Idris MA, Saiang D, Nordlund E. Stochastic assessment of pillar stability at Laisvall mine using artificial neural network. Tunn Undergr Space Technol 2015;49:307-19.
  • [58] Saeidi A, Heidarzadeh S, Lalancette S, Rouleau A. The effects of in situ stress uncertainties on the assessment of open stope stability: case study at the Niobec Mine, Quebec (Canada). Geomech Energ Env 2021;25:100194.
  • [59] Shnorhokian S, Mitri HS, Moreau Verlaan L. Influence of rockmass property variations on pre-mining stresses: a case study. In: Proceedings of the 68th Canadian geotechnical conference - GéoQuebec 2015, Québec City (QC); 2015. September 20-23. Paper No 348.
  • [60] Shnorhokian S. 3D volumetric analysis of rock mass instability in various stope sequences. In: Proceedings of the V Seminario Peruano de Geoingeniería - ISRM Peru; 2021. p. 186-94. Lima, Peru.
  • [61] Shnorhokian S, Mitri HS, Thibodeau D. A methodology for calibrating numerical models with a heterogeneous rock mass. Int J Rock Mech Min Sci 2014;70:353-67.
  • [62] Brown ET, Hoek E. Trends in relationships between measured in-situ stresses and depth. Int J Rock Mech Min Sci 1978;15(4):211-5.
  • [63] Arjang B, Herget G. In-situ ground stresses in the Canadian hard rock mines: an update. Int J Rock Mech Min Sci 1997;34(15):1-15.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77416c19-ec3d-4670-ba0c-763cc22f024e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.