PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanofluid flow and heat transfer of carbon nanotube and graphene platelette nanofluids in entrance region of microchannels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Suspensions of nano-scale particles in liquids, dubbed nanofluids, are of great interest for heat transfer applications. Nanofluids potentially offer superior thermal conductivity to alternative, pure fluids and are of particular interest in applications where active cooling of power-dense systems is required. In this work, the thermophysical properties of carbon nanotube nanofluids (CNTNf) and those of graphene nanoplatelette nanofluids (GNPNf) as functions of particle volume fraction are deduced from published experiments. These properties are applied to a perturbative boundary layer model to examine how the velocity and temperature profiles (and correspondingly shear stress and surface heat transfer) vary with the nanoparticle concentration in the entrance region of microchannels. Findings of this modeling effort indicate that both shear stress and heat transfer in GNPNf increase with increasing particle concentration. The normalized increase in shear stress is approximately twice that for heat transfer as a function of the GNP particle concentration. Interestingly, CNTNf shows anti-enhancement heat transfer behaviour; an increasing concentration of CNT nanoparticles is associated with both an increase in shear stress and a decrease in the surface heat transfer rate.
Rocznik
Strony
355--379
Opis fizyczny
Bibliogr. 66 poz., rys.
Twórcy
autor
  • Chemical Fundamentals of Combustion, RWTH Aachen University, 52062 Aachen, Germany
autor
  • School of Engineering, Brown University, Providence, RI 02912, U.S.A
Bibliografia
  • 1. S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in: ASME International Mechanical Engineering Congress & Exposition, San Fransisco, 1995.
  • 2. S.K. Das, S.U.S. Choi, H.E. Patel, Heat transfer in nanofluids – a review, Heat Transfer Engineering, 27, 10, 3–19, 2006. http://doi:10.1080/01457630600904593.
  • 3. S.M.S. Murshed, C.A.N. de Castro (Eds.), Nanofluids: synthesis, properties, and applications, Nova Science Publishers, New York, 2014.
  • 4. S.M.S. Murshed, C.A.N. de Castro, Nanofluids as advanced coolants, in: Green Solvents I, Springer, Netherlands, pp. 397–415, 2012 http://doi.org/10.1007/978-94-007-1712-1_14.
  • 5. J. Buongiorno, Convective transport in nanofluids, Journal of Heat Transfer, 128, 3, 240–250, 2006. http://doi.org/10.1115/1.2150834.
  • 6. J.T.C. Liu, On the anomalous laminar heat transfer intensification in developing region of nanofluid flow in channels or tubes, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468, 2144, 2383–2398, 2012, http://doi.org/10.1098/rspa.2011.0671.
  • 7. V. Trisaksri, S. Wongwises, Critical review of heat transfer characteristics of nanofluids, Renewable and Sustainable Energy Reviews, 11, 3, 512–523, 2007, http://doi.org/10.1016/j.rser.2005.01.010.
  • 8. M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Conversion and Management, 52, 1, 789–793, 2011. http://doi.org/10.1016/j.enconman.2010.06.072.
  • 9. S.S. Murshed, C.N. de Castro, M. Lourenço, M. Lopes, F. Santos, A review of boiling and convective heat transfer with nanofluids, Renewable and Sustainable Energy Reviews, 15, 5, 2342–2354, 2011, http://doi.org/10.1016/j.rser.2011.02.016.
  • 10. K.V. Wong, O.D. Leon, Applications of nanofluids: Current and future, Advances in Mechanical Engineering, 2, 519659, 2010, http://doi.org/10.1155/2010/519659.
  • 11. J.T.C. Liu, M.E. Fuller, K.L. Wu, A. Czulak, A.G. Kithes, C.J. Felten,Nanofluid flow and heat transfer in boundary layers at small nanoparticle volume fraction: Zero nanoparticle flux at solid wall, Archives of Mechanics, 69, 75–100, 2017, http://am.ippt.pan.pl/am/article/view/v69p75.
  • 12. C.J. Barbosa De Castilho, M.E. Fuller, A. Sane, J.T.C. Liu, Nanofluid flow and heat transfer in boundary layers at small nanoparticle volume fraction: Non-zero nanoparticle flux at solid wall, Heat Transfer Engineering, 40, (9–10), 725–737, 2019, http://doi.org/10.1080/01457632.2018.1442298.
  • 13. D. Hopper, D. Jaganathan, J.L. Orr, J. Shi, F. Simeski, M. Yin, J.T.C. Liu, Heat transfer in nanofluid boundary layer near adiabatic wall, Journal of Nanofluids, 7, 6, 1297–1302, 2018, http://doi.org/10.1166/jon.2018.1551.
  • 14. Y. Li, S. Suzuki, T. Inagaki, N. Yamauchi, Carbon-nanotube nanofluid thermophysical properties and heat transfer by natural convection, Journal of Physics: Conference Series 557, 012051, 2014, http://doi.org/10.1088/1742-6596/557/1/012051.
  • 15. J. Meyer, T. McKrell, K. Grote, The influence of multi-walled carbon nanotubes on single-phase heat transfer and pressure drop characteristics in the transitional flow regime of smooth tubes, International Journal of Heat and Mass Transfer, 58, 1-2, 597–609, 2013, http://doi.org/10.1016/j.ijheatmasstransfer.2012.11.074.
  • 16. A. Amrollahi, A. Rashidi, R. Lotfi, M.E. Meibodi, K. Kashefi, Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region, International Communications in Heat and Mass Transfer, 37, 6, 717–723, 2010, http://doi.org/10.1016/j.icheatmasstransfer.2010.03.003.
  • 17. Y. Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), International Journal of Heat and Mass Transfer, 49, 1-2, 240–250, 2006, http://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009.
  • 18. P. Garg, J.L. Alvarado, C. Marsh, T.A. Carlson, D.A. Kessler, K. Annamalai, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, International Journal of Heat and Mass Transfer, 52, 21-22, 5090–5101, 2009, http://doi.org/10.1016/j.ijheatmasstransfer.2009.04.029.
  • 19. S. Kakaç, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, International Journal of Heat and Mass Transfer, 52, 13-14, 3187–3196, 2009, http://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006.
  • 20. G.H. Ko, K. Heo, K. Lee, D.S. Kim, C. Kim, Y. Sohn, M. Choi, An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube, International Journal of Heat and Mass Transfer, 50, 23-24, 4749–4753, 2007, http://doi.org/10.1016/j.ijheatmasstransfer.2007.03.029.
  • 21. Z.-H. Liu, L. Liao, Forced convective flow and heat transfer characteristics of aqueous drag-reducing fluid with carbon nanotubes added, International Journal of Thermal Sciences, 49, 12, 2331–2338, 2010, http://doi.org/10.1016 /j.ijthermalsci.2010.08.001.
  • 22. H. Xie, H. Lee, W. Youn, M. Choi, Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities, Journal of Applied Physics, 94, 8, 4967, 2003, https://doi.org/10.1063/1.1613374.
  • 23. W. Yu, H. Xie, X. Wang, X. Wang, Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets, Physics Letters A, 375, 10, 1323–1328, 2011, https://doi.org/10.1016/j.physleta.2011.01.040.
  • 24. S.S. Sanukrishna, M.J. Prakash, Exploiting the potentials of graphene nano-platelets for the development of energy-efficient lubricants for refrigeration systems, in: Springer Transactions in Civil and Environmental Engineering, Springer, Singapore, pp. 303–312, 2002, https://doi.org/10.1007/978-981-15-1063-2_24.
  • 25. A.S. Dalkılıç, H. Mercan, G. Özçelik, S. Wongwises, Optimization of the finned double-pipe heat exchanger using nanofluids as working fluids, Journal of Thermal Analysis and Calorimetry, https://doi.org/10.1007/s10973-020-09290-x.
  • 26. J.P. Vallejo, U. Calviño, I. Freire, J. Fernández-Seara, L. Lugo, Convective heat transfer in pipe flow for glycolated water-based carbon nanofluids. A thorough analysis, Journal of Molecular Liquids, 301, 112370, 2020, https://doi.org/10.1016/j.molliq.2019.112370.
  • 27. A.O. Borode, N.A. Ahmed, P.A. Olubambi, A review of heat transfer application of carbon-based nanofluid in heat exchangers, Nano-Structures & Nano-Objects, 20, 100394, 2019, https://doi.org/10.1016/j.nanoso.2019.100394.
  • 28. S.S. Sanukrishna, A.V. Raju, A. Krishnan, G.H. Harikrishnan, A. Amal, T.S.K. Kumar, M.J. Prakash, Enhancing the thermophysical properties of PAG lubricant using graphene nano-sheets, Journal of Physics: Conference Series, 1355, 012041, 2019, https://doi.org/10.1088/1742-6596/1355/1/012041.
  • 29. A. Akbari, E. Mohammadian, S.A.A. Fazel, M. Shanbedi, M. Bahreini, M. Heidari, G. Ahmadi, Comparison between nucleate pool boiling heat transfer of grapheme nanoplatelet- and carbon nanotube- based aqueous nanofluids, ACS Omega, 4, 21, 19183–19192, 2019, https://doi.org/10.1021/acsomega.9b02474.
  • 30. A.O. Borode, N.A. Ahmed, P.A. Olubambi, Application of carbon-based nanofluids in heat exchangers: Current trends, Journal of Physics: Conference Series, 1378, 032061, 2019, doi.org/10.1088/1742-6596/1378/3/032061.
  • 31. A.A. Hussien, M.Z. Abdullah, N.M. Yusop, W. Al-Kouz, E. Mahmoudi, M. Mehrali, Heat transfer and entropy generation abilities of MWCNTs/GNPs hybrid nanofluids in microtubes, Entropy, 21, 5, 480, 2019, https://doi.org/10.3390/e21050480.
  • 32. S. Hamze, N. Berrada, A. Desforges, B. Vigolo, T. Maré, D. Cabaleiro, P. Estellé, Dynamic viscosity of purified MWCNT water and water-propylene glycol based nanofluids, in: 1st International Conference on Nanofluids (ICNf2019), 2nd European Symposium on Nanofluids (ESNf2019), pp. 329–332, 2019.
  • 33. D. Shi, Z. Guo, N. Bedford, Carbon nanotubes, in: Nanomaterials and Devices, Elsevier, pp. 49–82, 2015, https://doi.org/10.1016/b978-1-4557-7754-9.00003-2.
  • 34. V. Harik, Classification of carbon nanotubes, in: Mechanics of Carbon Nanotubes, Elsevier, pp. 73–105, 2018, https://doi.org/10.1016/b978-0-12-811071-3.00004-4.
  • 35. D.E.S. de Sousa, C.H. Scuracchio, G.M. de Oliveira Barra, A. de Almeida Lucas, Expanded graphite as a multifunctional filler for polymer nanocomposites, in: Multifunctionality of Polymer Composites, Elsevier, pp. 245–261, 2015, https://doi.org/10.1016/b978-0-323-26434-1.00007-6.
  • 36. N. Ahammed, L.G. Asirvatham, S. Wongwises, Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications, Journal of Thermal Analysis and Calorimetry, 123, 2, 1399–1409, 2016, https://doi.org/10.1007/s10973-015-5034-x.
  • 37. D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International Journal of Heat and Mass Transfer, 47, 24, 5181–5188, 2004, https://doi.org/10.1016/ j.ijheatmasstransfer.2004.07.012.
  • 38. H. Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung, Zeitschrift für angewandte Mathematik und Physik, 56, 1–37, 1908.
  • 39. E. Pohlhausen, Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung, ZAMM – Zeitschrift für angewandte Mathematik und Mechanik, 1, 2, 115–121, 1921, https://doi.org/10.1002/zamm.19210010205.
  • 40. M. Xing, J. Yu, R. Wang, Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes, International Journal of Heat and Mass Transfer, 88, 609–616, 2015, https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.005.
  • 41. L. Chen, H. Xie, Y. Li, W. Yu, Nanofluids containing carbon nanotubes treated by mechanochemical reaction, Thermochimica Acta, 477, 1-2, 21–24, 2008, https://doi.org/10.1016/j.tca.2008.08.001.
  • 42. T.X. Phuoc, M. Massoudi, R.-H. Chen, Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan, International Journal of Thermal Sciences, 50, 1, 12–18, 2011, https://doi.org/10.1016/j.ijthermalsci.2010.09.008.
  • 43. L. Chen, H. Xie, W. Yu, Y. Li, Rheological behaviors of nanofluids containing multi-walled carbon nanotube, Journal of Dispersion Science and Technology, 32, 4, 550–554, 2011, https://doi.org/10.1080/01932691003757223.
  • 44. M. Mehrali, E. Sadeghinezhad, S. Latibari, S. Kazi, M. Mehrali, M.N.B.M. Zubir, H.S. Metselaar, Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets, Nanoscale Research Letters, 9, 1, 15, 2014, https://doi.org/10.1186/1556-276x-9-15.
  • 45. C. Selvam, D.M. Lal, S. Harish, Enhanced heat transfer performance of an automobile radiator with graphene based suspensions, Applied Thermal Engineering, 123, 50–60, 2017, https://doi.org/10.1016/j.applthermaleng.2017.05.076.
  • 46. S. Askari, R. Lotfi, A. Seifkordi, A. Rashidi, H. Koolivand, A novel aproach for energy and water conservation in wet cooling towers by using MWNTs and nanoporous graphene nanofluids, Energy Conversion and Management, 109, 10–18, 2016, https://doi.org/10.1016/j.enconman.2015.11.053.
  • 47. Z. Said, R. Saidur, M. Sabiha, N. Rahim, M. Anisur, Thermophysical properties ofsingle wall carbon nanotubes and its effect on exergy efficiency of a flat plate solar collector, Solar Energy, 115, 757–769, 2015, https://doi.org/10.1016/j.solener.2015.02.037.
  • 48. S. Dinarvand, Nodal/saddle stagnation-point boundary layer flow of CuO–Ag/water hy-brid nanofluid: a novel hybridity model, Microsystem Technologies, 25, 7, 2609–2623, 2019, https://doi.org/10.1007/s00542-019-04332-3.
  • 49. A. Kuznetsov, D. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, International Journal of Thermal Sciences, 49, 2, 243–247, 2010, https://doi.org/10.1016/j.ijthermalsci.2009.07.015.
  • 50. M. Sheremet, I. Pop, Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’smathematicalmodel, International Journal of Heat and Mass Transfer, 79, 137–145, 2014, https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.092.
  • 51. T. Muhammad, A. Alsaedi, S. A. Shehzad, T. Hayat, A revised model for Darcy–Forchheimer flow of Maxwell nanofluid subject to convective boundary condition, Chinese Journal of Physics, 55, 3, 963–976, 2017, https://doi.org/10.1016/j.cjph.2017.03.006.
  • 52. T. Hayat, T. Muhammad, S. Shehzad, A. Alsaedi, On three-dimensional boundary layer flow of Sisko nanofluid with magnetic field effects, Advanced Powder Technology, 27, 2, 504–512, 2016, https://doi.org/10.1016/j.apt.2016.02.002.
  • 53. M. Sheikholeslami, H.B. Rokni, Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force, Computer Methods in Applied Mechanics and Engineering, 317, 419–430, 2017, https://doi.org/10.1016/j.cma.2016.12.028.
  • 54. M. Sheikholeslami, S. Shehzad, Z. Li, A. Shafee, Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law, International Journal of Heat and Mass Transfer, 127, 614–622, 2018, https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.013.
  • 55. A. Kuznetsov, D. Nield, The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: A revised model, International Journal of Heat and Mass Transfer, 65, 682–685, 2013, https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.054.
  • 56. M. A. Sheremet, T. Grosan, I. Pop, Free convection in a square cavity filled with a porous medium saturated by nanofluid using Tiwari and Das’ nanofluid model, Transport in Porous Media, 106, 3, 595–610, 2014, https://doi.org/10.1007/s11242-014-0415-3.
  • 57. A. Kuznetsov, D. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate: A revised model, International Journal of Thermal Sciences, 77, 126–129, 2014, https://doi.org/10.1016/j.ijthermalsci.2013.10.007.
  • 58. T. Muhammad, A. Alsaedi, T. Hayat, S.A. Shehzad, A revised model for Darcy–Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition, Results in Physics, 7, 2791–2797, 2017, https://doi.org/10.1016/j.rinp.2017.07.052.
  • 59. J. Buongiorno, D.C. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, Y.V. Tolmachev, P. Keblinski, L. Wen Hu, J.L. Alvarado, I. C. Bang, S.W. Bishnoi, M. Bonetti, F. Botz, A. Cecere, Y. Chang, G. Chen, H. Chen, S.J. Chung, M.K. Chyu, S.K. Das, R.D. Paola, Y. Ding, F. Dubois, G. Dzido, J. Eapen, W. Escher, D. Funfschilling, Q. Galand, J. Gao, P.E. Gharagozloo, K.E. Goodson, J.G. Gutierrez, H. Hong, M. Horton, K.S. Hwang, C.S. Iorio, S.P. Jang, A.B. Jarzebski, Y. Jiang, L. Jin, S. Kabelac, A. Kamath, M.A. Kedzierski, L.G. Kieng, C. Kim, J.-H. Kim, S. Kim, S.H. Lee, K.C. Leong, I. Manna, B. Michel, R. Ni, H. E. Patel, J. Philip, D. Poulikakos, C. Reynaud, R. Savino, P.K. Singh, P. Song, T. Sundararajan, E. Timofeeva, T. Tritcak, A.N. Turanov, S.V. Vaerenbergh, D. Wen, S. Witharana, C.Yang, W.-H. Yeh, X.-Z. Zhao, S.-Q. Zhou, A benchmark study on the thermal conductivity of nanofluids, Journal of Applied Physics, 106, 9, 094312, 2009,https://doi.org/10.1063/1.3245330.
  • 60. H. Schlichting, Boundary-Layer Theory, 6th ed., McGraw-Hill, New York, 1968.
  • 61. A. Fick, Ueber diffusion, Annalen der Physik und Chemie, 170, 1, 59–86, 1855, https: //doi.org/10.1002/andp.18551700105.
  • 62. M.J. Assael, I.N. Metaxa, J. Arvanitidis, D. Christofilos, C. Lioutas, Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants, International Journal of Thermophysics, 26, 3, 647–664, 2005, https://doi.org/10.1007/s10765-005-5569-3.
  • 63. A.C. Hindmarsh, Scientific Computing, North-Holland Publishing Company, 1983, Ch. ODEPACK, A Systematized Collection of ODE Solvers, pp. 55–64.
  • 64. S.H. John W. Eaton, D. Bateman, R. Wehbring, http://www.gnu.org/software /octave /doc/interpreter, version 4.0.0 manual: a high-level interactive language for numerical computations, 2015, http://www.gnu.org/software/octave/doc/interpreter.
  • 65. J.C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 2, Clarendon Press, Oxford, 1881.
  • 66. R. Prasher, D. Song, J. Wang, P. Phelan, Measurements of nanofluid viscosity and its implications for thermal applications, Applied Physics Letters, 89, 13, 133108, 2006, https://doi.org/10.1063/1.2356113.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7740f161-ad40-4f49-9716-7567304bd9c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.