PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Climate change, critical material shortages and environmental degradation pose an existential threat to the entire world. Immediate action is needed to transform the global economy towards a more circular economy with less intensive use of fossil energy and limited resources and more use of recyclable materials. Recyclable materials and manufacturing techniques will play a critical role in this transformation. Substantial advancements will be needed to achieve a more intelligent materials design to enhance both functionality and enhanced sustainability. The development of hybrid materials combining functionality at macro and nano scales based on organic and inorganic compounds, that are entirely recyclable could be used for tremendous applications. In this mini-review, we provide the reader with recent innovations on hybrid materials for application in water, energy and raw materials sectors. The topic is very modern and after its deep study we propose a creation an international research centre, that would combine the development of hybrid materials with green manufacturing. We have highlighted a framework that would comprise critical themes of the initial research needed. Such a centre would promote sustainable production of materials through intelligent hybridisation and eco-efficient, digital manufacturing and enable a circular economy in the long term. Such activities are strongly supported by current environmental and economical initiatives, like the Green Deal, REPower EU and digital EU initiatives.
Rocznik
Strony
447--462
Opis fizyczny
Bibliogr. 117 poz., rys.
Twórcy
  • Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, phone +420 485 353 389
  • Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, phone +420 485 353 389
autor
  • School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, UK; r3 Environmental Technology Ltd, Reading RG6 6DW, United Kingdom
autor
  • Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, phone +420 485 353 389
  • Fraunhofer Institute for Machine Tools and Forming Technology IWU, Theodor-Körner-Allee 6, Zittau, Germany
  • Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Str. 1, Halle (Saale), 06120 Germany
  • Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
  • Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, phone +420 485 353 389
Bibliografia
  • [1] Crutzen PJ, Wacławek S. Atmospheric Chemistry and Climate in the Anthropocene. Chem Didact Ecol Metrol. 2014;19:9-28. DOI: 10.1515/cdem-2014-0001.
  • [2] Simionescu M, Szeles MR, Gavurova B, Mentel U. The impact of quality of governance, renewable energy and foreign direct investment on sustainable development in CEE countries. Front Environ Sci. 2021;9:425. DOI: 10.3389/FENVS.2021.765927/BIBTEX.
  • [3] European Commission and Directorate - General for Research and Innovation. ERA industrial technology roadmap for low-carbon technologies in energy-intensive industries. 2022. Available from: https://researchand-innovation.ec.europa.eu/knowledge-publications-tools-and-data/publications/all-publications/eraindustrial-technology-roadmap-low-carbon-technologies-energy-intensive-industries_en.
  • [4] EIT Climate-KIC will help 100 European cities to achieve climate neutrality 2022. Available from: https://eit.europa.eu/news-events/news/eit-climate-kic-will-help-100-european-cities-achieve-climateneutrality?pk_campaign=Newsletter-07-06-2022_12-10&pk_kwd=eit.europa.eu/news-events/news/eitclimate-kic-will-help-100-european-cities-achieve-climate-neu [accessed July 23, 2022].
  • [5] European Commission, REPowerEU: affordable, secure and sustainable energy for Europe. Eur Com. 2022. Available from: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/repowereuaffordable-secure-and-sustainable-energy-europe [accessed July 23, 2022].
  • [6] Teixeira JE, Tavares-Lehmann ATCP. Industry 4.0 in the European Union: Policies and national strategies. Technol Forecast Soc Change. 2022;180:121664. DOI: 10.1016/J.TECHFORE.2022.121664.
  • [7] Alexa L, Pîslaru M, Avasilcăi S. From Industry 4.0 to Industry 5.0 - An Overview of European Union Enterprises. 2022:221-31. DOI: 10.1007/978-981-16-7365-8_8.
  • [8] Lorenz M, Lüers M, Ludwig M, Rees S, Rauen H, Zelinger M, et al. Grüne Technologien für grünes Geschäft 2020. Available from: https://web-assets.bcg.com/cd/51/bf13805d4de4a570010010b3dca4/formachinery-makers-green-tech-creates-green-business-de.pdf [accessed June 29, 2022].
  • [9] Doyle-Kent M, Kopacek P. Industry 5.0: Is the manufacturing industry on the cusp of a new revolution? Lect Notes Mech Eng. 2020:432-41. DOI: 10.1007/978-3-030-31343-2_38/COVER/.
  • [10] Zhang L, Xu M, Chen H, Li Y, Chen S. Globalization, green economy and environmental challenges: State of the art review for practical implications. Front Environ Sci. 2022;10:199. DOI: 10.3389/FENVS.2022.870271/BIBTEX.
  • [11] Wacławek S. Greener catalysis for environmental applications. Catalysts. 2021;11:585. DOI: 10.3390/catal11050585.
  • [12] Genchi GG, Marino A, Tapeinos C, Ciofani G. Smart materials meet multifunctional biomedical devices: Current and prospective implications for nanomedicine. Front Bioeng Biotechnol. 2017;5. DOI: 10.3389/FBIOE.2017.00080.
  • [13] Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable polymeric scaffolds for enzyme immobilization. Front Bioeng Biotechnol. 2020;8. DOI: 10.3389/FBIOE.2020.00830.
  • [14] Wacławek S, Černík M, Dionysiou DD. The Development and Challenges of Oxidative Abatement for Contaminants of Emerging Concern. A New Paradigm for Environmental Chemistry and Toxicology. Singapore: Springer Singapore; 2020. DOI: 10.1007/978-981-13-9447-8_10.
  • [15] Development of CFRP Hydrogen Pressure Vessels - CIKONI - Innovate. Develop. Realize. – Composite Engineering. Carbon Entwicklung - CFK (Carbon). Available from: https://cikoni.com/en/development-ofcfrp-hydrogen-pressure-vessels [accessed August 4, 2022].
  • [16] Goroncy J. The long road to mass production. AutomobilkonstruktionIndustrieDe. Available from: https://automobilkonstruktion.industrie.de/karosserie-interieur/der-lange-weg-zur-grossserie/#slider-intro-1 [accessed August 4, 2022].
  • [17] Lee SE, Kim DU, Cho YJ, Seo HS. Multiple impact damage in glare laminates: Experiments and simulations. Materials. 2021;14:7800. DOI: 10.3390/ma14247800.
  • [18] Glowacz A, Antonino-Daviu JA, Caesarendra W, Civera M, Surace C. Non-destructive techniques for the condition and structural health monitoring of wind turbines: A literature review of the last 20 years. Sensors. 2022;22:1627. DOI: 10.3390/S22041627.
  • [19] Krawczyk K, Wacławek S, Silvestri D, Padil VVT, Řezanka M, Černík M, et al. Surface modification of zero-valent iron nanoparticles with β-cyclodextrin for 4-nitrophenol conversion. J Colloid Interface Sci. 2021;586:655-62. DOI: 10.1016/j.jcis.2020.10.135.
  • [20] Ediyilyam S, George B, Shankar SS, Dennise TT, Wacławek S, Cerník M, et al. Chitosan/gelatin/silver nanoparticles composites films for biodegradable food packaging applications. Polymers. 2021;13(11):1680. DOI: 10.3390/polym13111680.
  • [21] Silvestri D, Wacławek S, Ramakrishnan RK, Venkateshaiah A, Krawczyk K, Padil VVT, et al. The use of a biopolymer conjugate for an eco-friendly one-pot synthesis of palladium-platinum alloys. Polymers. 2019;11:1948. DOI: 10.3390/polym11121948.
  • [22] Krawczyk K, Wacławek S, Silvestri D, Torres-Mendieta R, Padil VVT, Řezanka M, et al. Synergistic effect of nano zero-valent iron and cyclodextrins: A nano-structure for water purification. NANOCON Conf Proc 11th Int Conf Nanomaterials. 2020:279-86. TANGER Ltd. DOI: 10.37904/nanocon.2019.8575.
  • [23] Silvestri D, Wacławek S, Venkateshaiah A, Krawczyk K, Sobel B, Padil VVT, et al. Synthesis of Ag nanoparticles by a chitosan-poly(3-hydroxybutyrate) polymer conjugate and their superb catalytic activity. Carbohydr Polym. 2020;232:115806. DOI: 10.1016/j.carbpol.2019.115806.
  • [24] Khanam PN, Khalil HPSA, Jawaid M, Reddy GR, Narayana CS, Naidu SV. Sisal/carbon fibre reinforced hybrid composites: tensile, flexural and chemical resistance properties. J Polym Environ. 2010;18:727-33. DOI: 10.1007/s10924-010-0210-3.
  • [25] Liras M, Barawi M, De La Peña O’Shea VA. Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications. Chem Soc Rev. 2019;48:5454-87. DOI: 10.1039/C9CS00377K.
  • [26] Staude I, Decker M, Ventura MJ, Jagadish C, Neshev DN, Gu M, et al. Hybrid high-resolution three-dimensional nanofabrication for metamaterials and nanoplasmonics. Adv Mater. 2013;25:1260-4. DOI: 10.1002/ADMA.201203564.
  • [27] Wang H, Dai H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem Soc Rev. 2013;42:3088-113. DOI: 10.1039/C2CS35307E.
  • [28] Hagelien TF, Preisig HA, Friis J, Klein P, Konchakova N. A practical approach to ontology-based data modelling for semantic interoperability. 14th WCCM-ECCOMAS Congr 2020. 2021;2100-Other. DOI: 10.23967/WCCM-ECCOMAS.2020.035.
  • [29] European Commission. Resource Efficiency - Environment - European Commission 2016. Available from: https://ec.europa.eu/environment/resource_efficiency/ [accessed June 21, 2022].
  • [30] Padil VVT, Wacławek S, Černík M, Varma RS. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol Adv. 2018;36:1984-2016. DOI: 10.1016/j.biotechadv.2018.08.008.
  • [31] Padil VVT, Nguyen NHA, Ševců A, Černík M. Fabrication, characterization, and antibacterial properties of electrospun membrane composed of gum Karaya, polyvinyl alcohol, and silver nanoparticles. J Nanomater. 2015;2015:1-10. DOI: 10.1155/2015/750726.
  • [32] Venkateshaiah A, Sehl E, Timmins RL, Wacławek S, Černík M, Agarwal S, et al. Dialdehyde modified tree gum Karaya: A sustainable green crosslinker for gelatin-based edible films. Adv Sustain Syst. 2022. DOI: 10.1002/adsu.202100423.
  • [33] Ramakrishnan RK, Padil VVT, Škodová M, Wacławek S, Černík M, Agarwal S. Hierarchically porous bio-based sustainable conjugate sponge for highly selective oil/organic solvent absorption. Adv Funct Mater. 2021;31:2100640. DOI: 10.1002/adfm.202100640.
  • [34] Venkateshaiah A, Cheong JY, Habel C, Wacławek S, Lederer T, Černík M, et al. Tree gum-graphene oxide nanocomposite films as gas barriers. ACS Appl Nano Mater. 2020;3:633-40. DOI: 10.1021/acsanm.9b02166.
  • [35] Wacławek S, Padil VVT, Černík M. Major advances and challenges in heterogeneous catalysis for environmental applications: A review. Ecol Chem Eng S. 2018;25:9-34. DOI: 10.1515/eces-2018-0001.
  • [36] Chen Z, Wang D, Yang H, Zhang Y, Li Y, Li C, et al. Novel application of red mud as disposal catalyst for pyrolysis and gasification of coal. Carbon Resour Convers. 2021;4:10-8. DOI: 10.1016/j.crcon.2021.01.001.
  • [37] Bhat AH, Khalil HPSA, Banthia AK. Thermoplastic polymer based modified red mud composites materials. Adv Compos Mater - Ecodesign Anal. 2011. DOI: 10.5772/14377.
  • [38] Pietrantonio M, Pucciarmati S, Torelli GN, D’Aria G, Forte F, Fontana D. Towards an integrated approach for red mud valorisation: a focus on titanium. Int J Environ Sci Technol. 2021;18:455-62. DOI: 10.1007/S13762-020-02835-5/TABLES/7.
  • [39] Salvé J, Grégoire B, Imbert L, Hubert F, Karpel Vel Leitner N, Leloup M. Design of hybrid chitosan-montmorillonite materials for water treatment: Study of the performance and stability. Chem Eng J Adv. 2021;6:100087. DOI: 10.1016/J.CEJA.2021.100087.
  • [40] Silvestri D, Krawczyk K, Pawlyta M, Krzywiecki M, Padil VVT, Torres-Mendieta R, et al. Influence of catalyst zeta potential on the activation of persulfate. Chem Commun. 2021;57:7814-7. DOI: 10.1039/d1cc01946e.
  • [41] Kudlek E, Silvestri D, Wacławek S, Padil VVT, Stuchlík M, Voleský L, et al. TiO2 immobilised on biopolymer nanofibers for the removal of bisphenol A and diclofenac from water. Ecol Chem Eng S. 2017;24:417-29. DOI: 10.1515/eces-2017-0028.
  • [42] Alsalka Y, Al-Madanat O, Hakki A, Bahnemann DW. Boosting the H2 production efficiency via photocatalytic organic reforming: The role of additional hole scavenging system. Catalysts. 2021;11:1423. DOI: 10.3390/catal11121423.
  • [43] Wacławek S, Kudelski A, Lauterbach JA, Dionysiou DD. Commemorative issue in honor of Professor Gerhard Ertl on the occasion of His 85th birthday. Catalysts. 2022;12:624. DOI: 10.3390/catal12060624.
  • [44] Silvestri D, Wacławek S, Sobel B, Torres-Mendieta R, Novotný V, Nguyen NHA, et al. A poly(3-hydroxybutyrate)-chitosan polymer conjugate for the synthesis of safer gold nanoparticles and their applications. Green Chem. 2018;20:4975-82. DOI: 10.1039/c8gc02495b.
  • [45] Ahmadi M, Foladivanda M, Jaafarzadeh N, Ramezani Z, Ramavandi B, Jorfi S, et al. Synthesis of chitosan zero-valent iron nanoparticles-supported for cadmium removal: characterization, optimization and modeling approach. J Water Supply Res Technol - Aqua. 2017;66:116-30. DOI: 10.2166/aqua.2017.027.
  • [46] Tiraferri A, Chen KL, Sethi R, Elimelech M. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci. 2008;324:71-9. DOI: 10.1016/j.jcis.2008.04.064.
  • [47] San Román I, Galdames A, Alonso ML, Bartolomé L, Vilas JL, Alonso RM. Effect of coating on the environmental applications of zero valent iron nanoparticles: the lindane case. Sci Total Environ. 2016;565:795-803. DOI: 10.1016/j.scitotenv.2016.04.034.
  • [48] Xu W, Li Z, Shi S, Qi J, Cai S, Yu Y, et al. Carboxymethyl cellulose stabilized and sulfidated nanoscale zero-valent iron: Characterization and trichloroethene dechlorination. Appl Catal B Environ. 2020;262:118303. DOI: 10.1016/j.apcatb.2019.118303.
  • [49] Tosco TAE, Coisson M, Xue D, Sethi R. Zerovalent iron nanoparticles for groundwater remediation: Surface and magnetic properties, colloidal stability, and perspectives for field application. Research Signpost, Kerala. 2012:201-23.
  • [50] Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: Adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanoparticle Res. 2008;10:795-814. DOI: 10.1007/s11051-007-9315-6.
  • [51] Krol MM, Oleniuk AJ, Kocur CM, Sleep BE, Bennett P, Xiong Z, et al. A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environ Sci Technol. 2013;47:7332-40. DOI: 10.1021/es3041412.
  • [52] Krawczyk K, Silvestri D, Nguyen NHA, Ševců A, Łukowiec D, Padil VVT, et al. Enhanced degradation of sulfamethoxazole by a modified nano zero-valent iron with a β-cyclodextrin polymer: Mechanism and toxicity evaluation. Sci Total Environ. 2022;817:152888. DOI: 10.1016/j.scitotenv.2021.152888.
  • [53] Ren J, Woo YC, Yao M, Tijing LD, Shon HK. Enhancement of nanoscale zero-valent iron immobilization onto electrospun polymeric nanofiber mats for groundwater remediation. Process Saf Environ Prot. 2017;112:200-8. DOI: 10.1016/J.PSEP.2017.04.027.
  • [54] Kim HJ, Phenrat T, Tilton RD, Lowry G V. FeO nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ Sci Technol. 2009;43:3824-30. DOI: 10.1021/es802978s.
  • [55] Dong H, Zhao F, He Q, Xie Y, Zeng Y, Zhang L, et al. Physicochemical transformation of carboxymethyl cellulose-coated zero-valent iron nanoparticles (nZVI) in simulated groundwater under anaerobic conditions. Sep Purif Technol. 2017;175:376-83. DOI: 10.1016/j.seppur.2016.11.053.
  • [56] Li S, Tang J, Liu Q, Liu X, Gao B. A novel stabilized carbon-coated nZVI as heterogeneous persulfate catalyst for enhanced degradation of 4-chlorophenol. Environ Int. 2020;138:105639. DOI: 10.1016/j.envint.2020.105639.
  • [57] San Román I, Alonso ML, Bartolomé L, Galdames A, Goiti E, Ocejo M, et al. Relevance study of bare and coated zero valent iron nanoparticles for lindane degradation from its by-product monitorization. Chemosphere. 2013;93:1324-32. DOI: 10.1016/j.chemosphere.2013.07.050.
  • [58] Tasharrofi S, Sadegh Hassani S, Taghdisian H, Sobat Z. Environmentally friendly stabilized nZVI-composite for removal of heavy metals. New Polymer Nanocomposites for Environmental Remediation. Elsevier; 2018. DOI: 10.1016/B978-0-12-811033-1.00024-X.
  • [59] Song Y, Zeng Y, Liao J, Chen J, Du Q. Efficient removal of sulfamethoxazole by resin-supported zero-valent iron composites with tunable structure: Performance, mechanisms, and degradation pathways. Chemosphere. 2021;269:128684. DOI: 10.1016/j.chemosphere.2020.128684.
  • [60] Mosaferi M, Nemati S, Khataee AR, Nasseri S, Hashemi A. Removal of arsenic (III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose. J Environ Heal Sci Eng. 2014;12:74. DOI: 10.1186/2052-336X-12-74.
  • [61] Velimirovic M, Schmid D, Wagner S, Micić V, von der Kammer F, Hofmann T. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation. Sci Total Environ. 2015. DOI: 10.1016/j.scitotenv.2015.11.007.
  • [62] Wacławek S, Silvestri D, Hrabák P, Padil VVT, Torres-Mendieta R, Wacławek M, et al. Chemical oxidation and reduction of hexachlorocyclohexanes: A review. Water Res. 2019;162:302-19. DOI: 10.1016/j.watres.2019.06.072.
  • [63] Wacławek S, Nosek J, Cádrová L, Antoš V, Černík M. Use of various zero valent irons for degradation of chlorinated ethenes and ethanes. Ecol Chem Eng S. 2015;22:577-87. DOI: 10.1515/eces-2015-0034.
  • [64] Silvestri D, Wacławek S, Sobel B, Torres-Mendieta R, Pawlyta M, Padil VVT, et al. Modification of nZVI with a bio-conjugate containing amine and carbonyl functional groups for catalytic activation of persulfate. Sep Purif Technol. 2021;257:117880. DOI: 10.1016/j.seppur.2020.117880.
  • [65] Garrido PF, Calvelo M, Blanco-Gonzalez A, Veleiro U, Suarez F, Conde D, et al. The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. Int J Pharm. 2020;588:119689. DOI: 10.1016/j.ijpharm.2020.119689.
  • [66] Weiss-Errico MJ, O’Shea KE. Detailed NMR investigation of cyclodextrin-perfluorinated surfactant interactions in aqueous media. J Hazard Mater. 2017;329:57-65. DOI: 10.1016/j.jhazmat.2017.01.017.
  • [67] Ferino-Pérez A, Gamboa-Carballo JJ, Ranguin R, Levalois-Grützmacher J, Bercion Y, Gaspard S, et al. Evaluation of the molecular inclusion process of β-hexachlorocyclohexane in cyclodextrins. RSC Adv. 2019;9:27484-99. DOI: 10.1039/C9RA04431K.
  • [68] Kawano S, Kida T, Takemine S, Matsumura C, Nakano T, Kuramitsu M, et al. Efficient removal and recovery of perfluorinated compounds from water by surface-tethered β-cyclodextrins on polystyrene particles. Chem Lett. 2013;42:392-4. DOI: 10.1246/cl.121239.
  • [69] Tang J, Shi Z, Berry RM, Tam KC. Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind Eng Chem Res. 2015;54:3299-308. DOI: 10.1021/acs.iecr.5b00177.
  • [70] Celebioglu A, Aytac Z, Umu OCO, Dana A, Tekinay T, Uyar T. One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers. Carbohydr Polym. 2014;99:808-16. DOI: 10.1016/j.carbpol.2013.08.097.
  • [71] Hou Y, Kondoh H, Shimojo M, Sako EO, Ozaki N, Kogure T, et al. Inorganic nanocrystal self-assembly via the inclusion interaction of β-cyclodextrins: toward 3D spherical magnetite. J Phys Chem B. 2005. DOI: 10.1021/jp0476646.
  • [72] Aghahosseini H, Ramazani A. General overview on cyclodextrin-based artificial enzymes’ activity. Curr Org Chem. 2016;20:2817-36. DOI: 10.2174/1385272820666160328201207.
  • [73] Yang A, Ching C, Easler M, Helbling DE, Dichtel WR. Cyclodextrin polymers with nitrogen-containing tripodal crosslinkers for efficient PFAS adsorption. ACS Mater Lett. 2020;2:1240-5. DOI: 10.1021/acsmaterialslett.0c00240.
  • [74] Narayanan G, Shen J, Boy R, Gupta BS, Tonelli AE. aliphatic polyester nanofibers functionalized with cyclodextrins and cyclodextrin-guest inclusion complexes. Polymers. 2018;10:428. DOI: 10.3390/polym10040428.
  • [75] Sikder MT, Mihara Y, Islam MS, Saito T, Tanaka S, Kurasaki M. Preparation and characterization of chitosan-caboxymethyl-β-cyclodextrin entrapped nanozero-valent iron composite for Cu(II) and Cr(IV) removal from wastewater. Chem Eng J. 2014;236:378-87. DOI: 10.1016/j.cej.2013.09.093.
  • [76] Yao X, Mu J, Zeng L, Lin J, Nie Z, Jiang X, et al. Stimuli-responsive cyclodextrin-based nanoplatforms for cancer treatment and theranostics. Mater Horizons. 2019;6:846-70. DOI: 10.1039/c9mh00166b.
  • [77] Alsbaiee A, Smith BJ, Xiao L, Ling Y, Helbling DE, Dichtel WR. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature. 2016;529:190-4. DOI: 10.1038/nature16185.
  • [78] Gamboa-Carballo JJ, Ferino-Pérez A, Rana VK, Levalois-Grützmacher J, Gaspard S, Montero-Cabrera LA, et al. Theoretical evaluation of the molecular inclusion process between chlordecone and cyclodextrins: A new method for mitigating the basis set superposition error in the case of an implicit solvation model. J Chem Inf Model. 2020;60:2115-25. DOI: 10.1021/acs.jcim.9b01064.
  • [79] Mao Y, Sun M, Yang X, Wei H, Song Y, Xin J. Remediation of organochlorine pesticides (OCPs) contaminated soil by successive hydroxypropyl-β-cyclodextrin and peanut oil enhanced soil washing-nutrient addition: A laboratory evaluation. J Soils Sediments. 2013;13:403-12. DOI: 10.1007/s11368-012-0628-4.
  • [80] Shao D, Sheng G, Chen C, Wang X, Nagatsu M. Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere. 2010;79:679-85. DOI: 10.1016/J.CHEMOSPHERE.2010.03.008.
  • [81] Hanna K, Chiron S, Oturan MA. Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation. Water Res. 2005;39:2763-73. DOI: 10.1016/j.watres.2005.04.057.
  • [82] Wang H, Yan S, Qu B, Liu H, Ding J, Ren N. Magnetic solid phase extraction using Fe3O4@β-cyclodextrin-lipid bilayers as adsorbents followed by GC-QTOF-MS for the analysis of nine pesticides. New J Chem. 2020;44:7727-39. DOI: 10.1039/d0nj01191f.
  • [83] Badruddoza AZM, Tay ASH, Tan PY, Hidajat K, Uddin MS. Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies. J Hazard Mater. 2011;185:1177-86. DOI: 10.1016/j.jhazmat.2010.10.029.
  • [84] Ren B, Zhang M, Gao H, Zheng J, Jia L. Atomic elucidation of the cyclodextrin effects on DDT solubility and biodegradation. Phys Chem Chem Phys. 2016;18:17380-8. DOI: 10.1039/c6cp02790c.
  • [85] Mrówczyński R, Jędrzak A, Szutkowski K, Grześkowiak B, Coy E, Markiewicz R, et al. Cyclodextrin-based magnetic nanoparticles for cancer therapy. Nanomaterials. 2018;8:170. DOI: 10.3390/nano8030170.
  • [86] Li X, Chen AY, Yu LY, Chen XX, Xiang L, Zhao HM, et al. Effects of β-cyclodextrin on phytoremediation of soil co-contaminated with Cd and BDE-209 by arbuscular mycorrhizal amaranth. Chemosphere. 2019;220:910-20. DOI: 10.1016/J.CHEMOSPHERE.2018.12.211.
  • [87] Fukushima M, Tatsumi K. Degradation of pentachlorophenol in contaminated soil suspensions by potassium monopersulfate catalyzed oxidation by a supramolecular complex between tetra(p-sulfophenyl)porphineiron(III) and hydroxypropyl-β-cyclodextrin. J Hazard Mater. 2007;144:222-8. DOI: 10.1016/j.jhazmat.2006.10.013.
  • [88] Chen L, Berry RM, Tam KC. Synthesis of β-Cyclodextrin-modified cellulose nanocrystals (CNCs)@Fe3O4@SiO2 superparamagnetic nanorods. ACS Sustain Chem Eng. 2014;2:951-8. DOI: 10.1021/sc400540f.
  • [89] Rajamanikandan R, Ilanchelian M. β-cyclodextrin functionalised silver nanoparticles as a duel colorimetric probe for ultrasensitive detection of Hg2+ and S2− ions in environmental water samples. Mater Today Commun. 2018;15:61-9. DOI: 10.1016/j.mtcomm.2018.02.024.
  • [90] Femminò S, Penna C, Bessone F, Caldera F, Dhakar N, Cau D, et al. α-cyclodextrin and α-cyclodextrin polymers as oxygen nanocarriers to limit hypoxia/reoxygenation injury: Implications from an in vitro model. Polymers. 2018;10:211. DOI: 10.3390/polym10020211.
  • [91] Martel B, Le Thuaut P, Bertini S, Crini G, Bacquet M, Torri G, et al. Grafting of cyclodextrins onto polypropylene nonwoven fabrics for the manufacture of reactive filters. III. Study of the sorption properties. J Appl Polym Sci. 2002;85:1771-8. DOI: 10.1002/app.10682.
  • [92] Alzate-Sánchez DM, Smith BJ, Alsbaiee A, Hinestroza JP, Dichtel WR. Cotton fabric functionalized with a β-cyclodextrin polymer captures organic pollutants from contaminated air and water. Chem Mater. 2016;28:8340-6. DOI: 10.1021/acs.chemmater.6b03624.
  • [93] Fava F, Bertin L, Fedi S, Zannoni D. Methyl-β-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Biotechnol Bioeng. 2003;81:381-90. DOI: 10.1002/BIT.10579.
  • [94] Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev. 1998;98:1743-53. DOI: 10.1021/cr970022c.
  • [95] Mamba BB, Krause RW, Malefetse TJ, Nxumalo EN. Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water. Environ Chem Lett. 2007;5:79-84. DOI: 10.1007/s10311-006-0082-x.
  • [96] Li X, Qi Z, Liang K, Bai X, Xu J, Liu J, et al. An Artificial supramolecular nanozyme based on β-cyclodextrin-modified gold nanoparticles. Catal Letters. 2008;124:413-7. DOI: 10.1007/s10562-008-9494-5.
  • [97] Hu X, Hu Y, Xu G, Li M, Zhu Y, Jiang L, et al. Green synthesis of a magnetic β-cyclodextrin polymer for rapid removal of organic micro-pollutants and heavy metals from dyeing wastewater. Environ Res. 2020;180. DOI: 10.1016/j.envres.2019.108796.
  • [98] Cathum SJ, Dumouchel A, Punt M, Brown CE. Sorption/desorption of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans (PCDDs/PCDFs) in the presence of cyclodextrins. Soil Sediment Contam. 2007;16:15-27. DOI: 10.1080/15320380601077750.
  • [99] Varghese B, Suliman FEO, Al-Hajri A, Al Bishri NSS, Al-Rwashda N. Spectral and theoretical study on complexation of sulfamethoxazole with β- and HPβ-cyclodextrins in binary and ternary systems. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2018;190:392-401. DOI: 10.1016/j.saa.2017.09.060.
  • [100] Monteiro APF, Caminhas LD, Ardisson JD, Paniago R, Cortés ME, Sinisterra RD. Magnetic nanoparticles coated with cyclodextrins and citrate for irinotecan delivery. Carbohydr Polym. 2017;163:1-9. DOI: 10.1016/j.carbpol.2016.11.091.
  • [101] Alam AU, Deen MJ. Bisphenol a electrochemical sensor using graphene oxide and β-cyclodextrin-functionalized multi-walled carbon nanotubes. Anal Chem. 2020;92:5532-9. DOI: 10.1021/acs.analchem.0c00402.
  • [102] Li J, Chen C, Zhao Y, Hu J, Shao D, Wang X. Synthesis of water-dispersible Fe3O4β-cyclodextrin by plasma-induced grafting technique for pollutant treatment. Chem Eng J. 2013. DOI: 10.1016/j.cej.2013.06.016.
  • [103] Malik NS, Ahmad M, Minhas MU. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS One. 2017;12:e0172727. DOI: 10.1371/journal.pone.0172727.
  • [104] Chalasani R, Vasudevan S. Cyclodextrin functionalized magnetic iron oxide nanocrystals: a host-carrier for magnetic separation of non-polar molecules and arsenic from aqueous media. J Mater Chem. 2012;22:14925. DOI: 10.1039/c2jm32360e.
  • [105] Topuz F, Uyar T. Electrospinning of cyclodextrin functional nanofibers for drug delivery applications. Pharmaceutics. 2019;11:6. DOI: 10.3390/pharmaceutics11010006.
  • [106] Abdalla AM, Hossain S, Nisfindy OB, Azad AT, Dawood M, Azad AK. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers Manage. 2018;165:602-27. DOI: 10.1016/J.ENCONMAN.2018.03.088.
  • [107] Stegbauer L, Schwinghammer K, Lotsch BV. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem Sci. 2014;5:2789-93. DOI: 10.1039/C4SC00016A.
  • [108] Lopez-Magano A, Jiménez-Almarza A, Aleman J, Mas-Ballesté R. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) applied to photocatalytic organic transformations. Catalysts. 2020;10:720. DOI: 10.3390/CATAL10070720.
  • [109] Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012;125:331-49. DOI: 10.1016/j.apcatb.2012.05.036.
  • [110] Sang SH, Furukawa H, Yaghi OM, Goddard WA. Covalent organic frameworks as exceptional hydrogen storage materials. J Am Chem Soc. 2008;130:11580-1. DOI: 10.1021/JA803247Y.
  • [111] Hirscher M, Panella B. Hydrogen storage in metal-organic frameworks. Scr Mater. 2007;56:809-12. DOI: 10.1016/J.SCRIPTAMAT.2007.01.005.
  • [112] Wang C, Wang H, Luo R, Liu C, Li J, Sun X, et al. Metal-organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate. Chem Eng J. 2017;330:262-71. DOI: 10.1016/j.cej.2017.07.156.
  • [113] Chambers A, Park C, Baker RTK, Rodriguez NM. Hydrogen storage in graphite nanofibers. J Phys Chem B. 1998;102. DOI: 10.1021/JP980114L.
  • [114] Ding B, Si Y. Electrospun Nanofibers for Energy and Environmental Applications. Ottawa: Springer Verlag GmbH; 2011. DOI: 10.1007/978-3-642-54160-5.
  • [115] Chen X, Xue Z, Niu K, Liu X, Wei Lv, Zhang B, et al. Li-fluorine codoped electrospun carbon nanofibers for enhanced hydrogen storage. RSC Adv. 2021;11:4053-61. DOI: 10.1039/d0ra06500e.
  • [116] Li F, Jiang X, Zhao J, Zhang S. Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano Energy. 2015;16:488-515. DOI: 10.1016/J.NANOEN.2015.07.014.
  • [117] Wacławek S, Ma X, Sharma VK, Xiao R, O’Shea KE, Dionysiou DD. Making waves: Defining advanced reduction technologies from the perspective of water treatment. Water Res. 2022;212:118101. DOI: 10.1016/j.watres.2022.118101.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7737a1b8-fa49-41b8-aae4-20c68a316c39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.