PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimising the event selection of the total-body J-PET scanner with a brain PET insert: A simulation study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objective: Positron emission tomography (PET) scanners with plastic scintillators offer more cost-effective instrumentation to image the distribution of radiopharmaceuticals. However, inter-detector scatters among plastic scintillators can lead to more false coincidences than in conventional PET scanners, since annihilation photons in plastic scintillators dominantly interact via Compton scattering, which deposits only a portion of the photon energy. A scatter test (ST), combined with a lower energy deposition threshold of 200 keV, has been used to preselect the coincidence events. Methods: In this work, we investigate the impact of temporal and spatial resolution limitations as well as a variation of the energy threshold on the preselection and different subsequent coincidence event selection policies via Monte Carlo simulations. We simulate the total-body Jagiellonian-PET (TB-J-PET), combined with a brain PET insert imaging a human-sized water phantom. Results: We find that coincidence time resolution (CTR) worse than 200 ps poses limitations on the ST for scanners close to the patient, such as the brain PET. Also, coincidence event selection requiring energy loss higher than 200 keV performs suboptimally, whereas a lower energy threshold (50 keV), combined with a time-based selection policy, can capture a higher percentage of true events, even under realistic time resolution. Conclusions: We recommend the adaptation of a time-based event selection policy together with a lowered energy threshold, which can also significantly increase sensitivity, as the latter rises faster than the fraction of true and non-phantom- -scattered events decreases. Dedicated analyses in the scatter-corrected image domain are necessary to further investigate this potential.
Twórcy
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University; Lojasiewicza street 11, 30-348 Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
Bibliografia
  • 1. Moskal P, Stępień EŁ. Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators. PET Clin. 2020 Oct;15(4):439-52. doi: https://doi.org/10.1016/j.cpet.2020.06.009.
  • 2. Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner - an economic total-body PET from plastic scintillators. Phys. Med. Biol. 2021;66:175015.
  • 3. Dadgar M, Parzych S, Ardebili FT, Baran J, Chug N, Curceanu C, et al. Investigation of novel preclinical Total Body PET designed with J-PET technology: A simu-lation study. IEEE Transactions on Radiation and Plasma Medical Sciences. 2023 Feb;7(2):124-31. doi: https://doi.org/10.1109/TRPMS.2022.3211780.
  • 4. Baran J, Krzemien W, Parzych S, Raczyński L, Bała M, Coussat A, et al. Realistic total‐body J‐PET geometry optimization: Monte Carlo study. Med. Phys. 2025;52:2961.
  • 5. Vandenberghe S, Moskal P, Karp J. State of the art in total body PET. EJNMMI Phys. 2020 May 25;7(1):35. doi: https://doi.org/10.1186/s40658-020-00290-2.
  • 6. Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First Human Imaging Studies with the EXPLORER Total-Body PET Scanner. J Nucl Med. 2019 Mar;60(3):299-303. doi: https://doi.org/10.2967/jnumed.119.226498.
  • 7. Spencer BA, Berg E, Schmall JP, Omidvari N, Leung EK, Abdelhafez YG, et al. Performance Evaluation of the uEXPLORER Total-Body PET/CT Scanner Based on NEMA NU 2-2018 with Additional Tests to Characterize PET Scanners with a Long Axial Field of View. J Nucl Med. 2021 Jun 1;62(6):861-70. doi: https://doi.org/10.2967/ jnumed.120.250597.
  • 8. Prenosil GA, Sari H, Fürstner M, Afshar-Oromieh A, Shi K, Rominger A, et al. Performance Characteristics of the Biograph Vision Quadra PET/ CT System with a Long Axial Field of View Using the NEMA NU 2-2018 Standard. J. Nucl. Med. 2022 Mar;63(3):476-84.
  • 9. Zhang H, Ren C, Liu Y, Yan X, Liu M, Hao Z, et al. Performance Characteristics of a New Generation 148-cm Axial Field-of-View uMI Panorama GS PET/CT System with Extended NEMA NU 2-2018 and EARL Standards. J Nucl Med. 2024 Dec;65(12):1974-82.
  • 10. Moskal P. Positronium Imaging. In: 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC); 26 Oct–2 Nov 2019; Manchester, United Kingdom. IEEE; 2019. p. 1-3. https://doi.org/10.1109/nss/mic42101.2019.9059856.
  • 11. Moskal P, Baran J, Bass S, Choiński J, Chug N, Curceanu C, et al. Positronium image of the human brain in vivo. Sci Adv. 2024;10:eadp2840.
  • 12. Bass SD, Mariazzi S, Moskal P, Stępień E. Colloquium: Positronium physics and biomedical applications. Rev. Mod. Phys. 2023;95:021002.
  • 13. Moskal P, Kumar D, Sharma S, Beyene EY, Chug N, Coussat A, et al. Nonmaximal entanglement of photons from positron-electron annihilation demonstrated using a plastic PET scanner. Sci Adv. 2025;11:eads3046.
  • 14. Moskal P, Niedźwiecki S, Bednarski T, Czerwiński E, Kapłon Ł, Kubicz E, et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nucl Instrum Methods Phys Res Sect A. 2014;764:317.
  • 15. Niedzwiecki S, Bialas P, Curceanu C, Czerwinski E, Dulski K, Gajos A, Glowacz B, et al. J-PET: a new technology for the whole-body PET imaging. Acta Physica Polonica B. 2017;48:1567.
  • 16. Moskal P, Gajos A, Mohammed M, Chhokar J, Chug N, Curceanu C et al. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat. Commun. 2021;12:5658.
  • 17. Tayefi Ardebili F, Moskal P. Assessing the Spatial Resolution of the Modular J-PET Scanner using the Maximum-Likelihood Expectation-Maximization (MLEM) algorithm. Bio-Algorithms and Med-Systems. 2024; 20(Special Issue):1-9. https://doi.org/10.5604/01.3001.0054.8095.
  • 18. Moskal P, Stępień E, Khreptak A. A vision to increase the availability of PET diagnostics in low- and medium-income countries by combining a low-cost modular J-PET tomograph with the 44Ti/44Sc generator. Bio-Algorithms and Med-Systems. 2024;20(Special Issue):55-62. https://doi.org/10.5604/01.3001.0054.9273.
  • 19. Paterson LM, Kornum BR, Nutt DJ, Pike VW, Knudsen GM. 5-HT radioligands for human brain imaging with PET and SPECT. Med Res Rev. 2013;33:54.
  • 20. Vijay A, Wang S, Worhunsky P, Zheng MQ, Nabulsi N, Ropchan J, et al. PET imaging reveals sex differences in kappa opioid receptor availability in humans, in vivo. Am J Nucl Med Mol Imaging. 2016 Aug 20;6(4):205-14.
  • 21. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage. 1997 Nov;6(4):279-87. doi: https://doi.org/10.1006/nimg.1997.0303.
  • 22. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018 Apr;14(4):535-62. doi: https://doi.org/10.1016/j.jalz.2018.02.018.
  • 23. Galldiks N, Langen KJ, Albert NL, Chamberlain M, Soffietti R, Kim MM, et al. PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro Oncol. 2019 May 6;21(5):585-95. doi: https://doi.org/10.1093/neuonc/noz003.
  • 24. Gonzalez-Montoro A, Barbera J, Sanchez D, Mondejar A, Freire M, Diaz K, et al. A new brain dedicated PET scanner with 4D detector information. Bio-Algorithms and Med-Systems. 2022;18(1):107-19. https://doi.org/10.2478/bioal-2022-0083.
  • 25. Akamatsu G, Takahashi M, Tashima H, Iwao Y, Yoshida E, Wakizaka H, et al. Performance evaluation of VRAIN: a brain-dedicated PET with a hemispherical detector arrangement. Phys Med Amp Biol. 2022;67:225011.
  • 26. Volpi T, Toyonaga T, Khattar N, Gallezot J-D, Naganawa M, Vanderlinden G, et al. Exceptional brain PET images from the NeuroEXPLORER: scans with targeted radiopharmaceuticals and comparison to HRRT. Eur J Nucl Med Mol Imaging. 2024;65:1320.
  • 27. Bartlett EA, Lesanpezeshki M, Anishchenko S, Shkolnik I, Ogden RT, Mann JJ, et al. Dynamic Human Brain Imaging with a Portable PET Camera: Comparison to a Standard Scanner. J Nucl Med. 2024 Feb 1;65(2):320-6. doi: https://doi.org/10.2967/jnumed.122.265309.
  • 28. Wang Z, Cao X, LaBella A, Zeng X, Biegon A, Franceschi D, et al. High-resolution and high-sensitivity PET for quantitative molecular imaging of the monoaminergic nuclei: A GATE simulation study. Med Phys. 2022;49:4430-44.
  • 29. Layden C, Klein K, Matava W, Sadam A, Abouzahr F, Proga M, et al. Design and modeling of a high resolution and high sensitivity PET brain scanner with double-ended readout. Biomed Phys Amp Eng Express. 2022;8:025011.
  • 30. Onishi Y, Isobe T, Ito M, Hashimoto F, Omura T, Yoshikawa E. Performance evaluation of dedicated brain PET scanner with motion correction system. Ann Nucl Med. 2022;36:746.
  • 31. Morimoto-Ishikawa D, Hanaoka K, Watanabe S, Yamada T, Yamakawa Y, Minagawa S, et al. Evaluation of the performance of a high-resolution time-of-flight PET system dedicated to the head and breast according to NEMA NU 2-2012 standard. EJNMMI Phys. 2022 Dec 16;9(1):88. doi: https://doi.org/10.1186/s40658-022-00518-3.
  • 32. Cabrera-Martín MN, González-Pavón G, Hernández MS, Morera-Ballester C, Matías-Guiu JA, Delgado JLC. Validation technique and improvements introduced in a new dedicated brain positron emission tomograph (CareMiBrain). Revista Española de Medicina Nuclear e Imagen Molecular (English Edition). 2021;40:239.
  • 33. Tao W, Weng F, Chen G, Lv L, Zhao Z, Xie S, et al. Design study of fully wearable high-performance brain PETs for neuroimaging in free movement. Phys. Med. Biol. 2020;65:229502.
  • 34. Xu J, Zhao Z, Xie S, Shi D, Huang Q, Peng Q. Mind-Tracker PET: A wearable PET camera for brain imaging. W: 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) [Internet]; 21-28 Oct 2017; Atlanta, GA. IEEE; 2017. p. 1-2. https://doi.org/10.1109/nssmic.2017.8532744.
  • 35. Catana C. Development of Dedicated Brain PET Imaging Devices: Recent Advances and Future Perspectives. J Nucl Med. 2019 Aug;60(8):1044-52. doi: https://doi.org/10.2967/jnumed.118.217901.
  • 36. Majewski S. Imaging is believing: The future of human total-body molecular imaging starts now. Il nuovo cimento C. 2020;43:1.
  • 37. Majewski S. Perspectives of brain imaging with PET systems. Bio-Algorithms and Med-Systems. 2021;17:269-91.
  • 38. Allen MS, Scipioni M, Catana C. New Horizons in Brain PET Instrumentation. PET Clin. 2024 Jan;19(1):25-36. doi: https://doi.org/10.1016/j.cpet.2023.08.001.
  • 39. Rädler M. Simulation studies of a brain pet insert for the total body j-pet tomograph, Presented at the 5th Jagiellonian Symposium on Advances in Particle Physics and Medicine (2024), Kraków, Poland, July 2024.
  • 40. Reddin JS, Scheuermann JS, Bharkhada D, Smith AM, Casey ME, Conti M, et al. Performance Evaluation of the SiPM-based Siemens Biograph Vision PET/CT System. In: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC); 10-17 Nov 2018; Sydney, Australia: IEEE; 2018. p. 1-5. https://doi.org/10.1109/nssmic.2018.8824710.
  • 41. Reynés-Llompart G, Gámez-Cenzano C, Romero-Zayas I, Rodríguez-Bel L, Vercher-Conejero JL, Martí-Climent JM. Phantom, clinical and texture indices evaluation and optimization of a Penalized-Likelihood Image Reconstruction Method (Q.Clear) on a BGO PET/CT scanner. J Nucl Med. 2017;58:1155.
  • 42. Yamagishi S, Miwa K, Kamitaki S, Anraku K, Sato S, Yamao T, et al. Performance Characteristics of a New-Generation Digital Bismuth Germanium Oxide PET/CT System, Omni Legend 32, According to NEMA NU 2-2018 Standards. J Nucl Med. 2023 Dec 1;64(12):1990-7. doi: https://doi.org/10.2967/jnumed.123.266140.
  • 43. Rausch I, Ruiz A, Valverde-Pascual I, Cal-González J, Beyer T, Carrio I. Performance Evaluation of the Vereos PET/CT System According to the NEMA NU2-2012 Standard. J Nucl Med. 2019 Apr;60(4):561-7. doi: https://doi.org/10.2967/jnumed.118.215541.
  • 44. Teräs M, Tolvanen T, Johansson JJ, Williams JJ, Knuuti J. Performance of the new generation of whole-body PET/CT scanners: Discovery STE and Discovery VCT. Eur J Nucl Med Mol Imaging. 2007;34:1683.
  • 45. Aykac M, Bal H, Panin V, Conti M. A study of narrow energy window on the siemens vision 600 pet/ct scanner. J Nucl Med. 2020;61(suppl 1):390.
  • 46. Parzych S. Optimization of positronium imaging performance of a simulated modular J-PET scanner using GATE software. Bio-Algorithms and Med-Systems. 2023;19(1):80-6. https://doi. org/10.5604/01.3001.0054.1937.
  • 47. Kowalski P, Wiślicki W, Shopa RY, Raczyński L, Klimaszewski K, Curcenau C, et al. Estimating the NEMA characteristics of the J-PET tomograph using the GATE package. Phys. Med. Biol. 2018;63(16):165008. doi: https://doi.org/10.1088/1361-6560/aad29b.
  • 48. Raczyński L, Wiślicki W, Krzemień W, Kowalski P, Alfs D, Bednarski T, et al. Calculation of the time resolution of the J-PET tomograph using kernel density estimation. Phys. Med. Biol. 2017;62:5076.
  • 49. Kowalski P, Wiślicki W, Raczyński L, Alfs D, Bednarski T, Białas P, et al. Scatter Fraction Of The J-PET Tomography Scanner. Acta Phys. Pol. B. 2016;47:549.
  • 50. Moskal P, Bednarski T, Białas P, Ciszewska M, Czerwiński E, Heczko A, et al. Strip-PET: A novel detector concept for the TOF-PET scanner. Nucl. Med. Rev. 2012;15(C):C68-C69.
  • 51. Moskal P, Rundel O, Alfs D, Bednarski T, Białas P, Czerwiński E, et al. A Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph. Phys. Med. Biol. 2016;61:2025.
  • 52. Tayefi Ardebili K, Niedźwiecki S, Moskal P, on behalf of J-PET collaboration. SiPM Performance Characterization for Total-Body J-PET: Hamamatsu vs. Onsemi. 2nd Symposium on new trends in nuclear and medical physics; [cited 2025 Sept 5]. Available from: https://indico.koza.if.uj.edu.pl/event/18/contributions/1698/.
  • 53. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004 Oct 7;49(19):4543-61. doi: https://doi.org/10.1088/0031-9155/49/19/007.
  • 54. Jan S, Benoit D, Becheva E, Carlier T, Cassol F, Descourt P, et al. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys. Med. Biol. 2011;56:881.
  • 55. Sarrut D, Bardiès M, Boussion N, Freud N, Jan S, Létang J-M, et al. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med Phys. 2014;41:064301.
  • 56. Sarrut D, Bała M, Bardiès M, Bert J, Chauvin M, Chatzipapas K, et al. Advanced Monte Carlo simulations of emission tomography imaging systems with GATE. Phys Med Biol. 2021 May 14;66(10):10.1088/1361-6560/abf276. doi: https://doi.org/10.1088/1361-6560/abf276.
  • 57. Sarrut D, Baudier T, Borys D, Etxebeste A, Fuchs H, Gajewski J, et al. The opengate ecosystem for monte carlo simulation in medical physics. Phys Med Biol. 2022;67(18):184001.
  • 58. Kochebina O, Bonifacio DA, Konstantinou G, Paillet A, Pommranz CM, Razdevšek G, Sharyy V, Yvon D, Jan S. New GATE Digitizer Unit for versions post v9.3. Front Phys. 2024;12:1294916.
  • 59. Tayefi Ardebili K, Niedzwiecki S, Moskal P. Development of a Cost-Effective Total Body J-PET from Plastic Scintillators: Definitive Design. PSMR2024 10th Conference on PET, SPECT, and MR Multimodal Technologies, Total Body and Fast Timing in Medical Imaging; [cited 2025 Sept 5]. Available from: https://agenda.infn.it/event/36860/contributions/230099/contribution.pdf.
  • 60. Smyrski J, Alfs D, Bednarski T, Białas P, Czerwiński E, Dulski K, et al. Measurement of gamma quantum interaction point in plastic scintillator with WLS strips. Nucl. Instrum. Methods Phys. Res. A. 2017;851:39.
  • 61. Gordon CC, Blackwell CL, Bradtmiller B, Parham JL, Barrientos P, Paquette SP, et al. 2012 Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics, Tech. Rep. TR-15/007 (U.S. Army Natick Soldier Research, Development and Engineering Center, Natick, MA, 2014).
  • 62. opengate.readthedocs.io [Internet]. Variables printed in monospace use the GATE naming convention; [cited 2025 Sept 5]. Available from: https://opengate.readthedocs.io/en/latest/.
  • 63. IN2P3 Events Directory (Indico) [Internet]. Rädler M, Moskal P, on behalf of the J-PET collaboration. GATE simulations of a multi-detector geometry: combining the total body J-PET with a brain insert. Presented at the GATE Scientific meeting in Athens, Greece; [cited 2025 Sept 5]. Available from: https://indico.in2p3.fr/event/35555/contributions/152184/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7736d7a4-1c98-4ea6-ac89-58441c776ef2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.