PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biosorption Capacity of Activated Sludge Sand Bed for Removal of Copper from Treated Wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the biosorption capacity of activated sludge sand bed was investigated for copper removal from wastewater. A sand bed consisting of three layers was used for the study: (1) filter gravel with a diameter of 2 to 3 mm, (2) a biological part inoculated with 200 ml of flocculent activated sludge with a dry weight of 5 kg/m3, (3) filter sand with a grain diameter of about 3 mm. The filter was fed with model wastewater prepared with sodium acetate, potassium nitrate, ammonium chloride, and potassium dihydrogen phosphate I and II basic. The source of Cu ions in the wastewater was CuSO4. The model wastewater used in this study was collected every 24 hours. The experiment was terminated when the concentration of Cu in the treated wastewater sample was equal to that in the treated wastewater. Such a phenomenon was indicative of the depletion of the sorption capacity of the tested bed, which was observed after 26 days. The concentration of copper in raw and effluent from the bed was studied using atomic absorption spectroscopy (ASA) in samples mineralized in nitric acid (HNO3) with the addition of perhydrol (H2O2). Two equilibrium models, Langmuir and Freudlich, were analyzed to study the absorption isotherms.
Słowa kluczowe
Rocznik
Strony
61--69
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Faculty of Civil Engineering and Environmental Sciences, Department of Technology in Environmental Engineering, Bialystok University of Technology, ul. Wiejska 45E, 15-351 Białystok, Poland
  • Faculty of Civil Engineering and Environmental Sciences, Department of Technology in Environmental Engineering, Bialystok University of Technology, ul. Wiejska 45E, 15-351 Białystok, Poland
  • Faculty of Civil Engineering and Environmental Sciences, Department of Technology in Environmental Engineering, Bialystok University of Technology, ul. Wiejska 45E, 15-351 Białystok, Poland
Bibliografia
  • 1. Abdelfattah I., Ismail A.A., Al Sayed F., Almedolab A., Aboelghait K.M. 2016. Biosorption of heavy metals ions in real industrial wastewater using peanut husk as efficient and cost effective adsorbent. Environmental Nanotechnology, Monitoring & Management, 6, 176–183.
  • 2. Ageena N.A. 2010. The use of local sawdust as an adsorbent for the removal of copper Ion from wastewater using fixed bed adsorption. Engineering and Technology Journal, 28(2).
  • 3. Ageena N.A. 2010. The use of local sawdust as an adsorbent for the removal of copper Ion from wastewater using fixed bed adsorption. Engineering and Technology Journal, 28(2).
  • 4. Ajmal M., Rao R.A., Ahmad R., Ahmad J., Rao L.A. 2001. Removal and recovery of heavy metals from electroplating wastewater by using Kyanite as an adsorbent. Journal of Hazardous Materials, 87(1–3), 127–137.
  • 5. Borba C.E., Guirardello R., Silva E.A., Veit M.T., Tavares C.R.G. 2006. Removal of nickel (II) ions from aqueous solution by biosorption in a fixed bed column: experimental and theoretical breakthrough curves. Biochemical Engineering Journal, 30(2), 184–191.
  • 6. Bradl H.B. 2004. Adsorption of heavy metal ions on soils and soils constituents. Journal of colloid and interface science, 277(1), 1–18.
  • 7. Comte S., Guibaud G., Baudu M. 2006. Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound. Process Biochemistry, 41(4), 815–823.
  • 8. de Sá Costa H.P., da Silva M.G.C., Vieira M.G.A. 2021. Biosorption of aluminum ions from aqueous solutions using non-conventional low-cost materials: A review. Journal of Water Process Engineering, 40, 101925.
  • 9. Deliyanni E.A., Peleka E.N., Matis K.A. 2007. Removal of zinc ion from water by sorption onto iron-based nanoadsorbent. Journal of hazardous materials, 141(1), 176–184.
  • 10. Elom N.I., Entwistle J., Dean J.R. 2014. Human health risk from Pb in urban street dust in northern UK cities. Environmental Chemistry Letters, 12(1), 209–218.
  • 11. Esmaeili A., Darvish M. 2014. Evaluation of the marine alga Sargassum glaucescens for the adsorption of Zn (II) from aqueous solutions. Water Quality Research Journal of Canada, 49(4), 339–345.
  • 12. Esmaeili A., Ghasemi S., Rustaiyan A. 2008. Evaluation of the activated carbon prepared from the algae Gracilaria for the biosorption of Cu (II) from aqueous solutions. African Journal of Biotechnology, 7(12).
  • 13. Fu F., Wang Q. 2011. Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 92(3), 407–418.
  • 14. García-Niño W.R., Pedraza-Chaverrí J. 2014. Protective effect of curcumin against heavy metals-induced liver damage. Food and Chemical Toxicology, 69, 182–201.
  • 15. Hua M., Zhang S., Pan B., Zhang W., Lv L., Zhang Q. 2012. Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of hazardous materials, 211, 317–331.
  • 16. Keng P.S., Lee S.L., Ha S.T., Hung Y.T., Ong S.T. 2014. Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Environmental Chemistry Letters, 12(1), 15–25.
  • 17. Kosobucki P., Kruk M., Buszewski B. 2008. Immobilization of selected heavy metals in sewage sludge by natural zeolites. Bioresource technology, 99(13), 5972–5976.
  • 18. Marques P.A.S.S., Rosa M.F., Pinheiro H.M. 2000. pH effects on the removal of Cu 2+, Cd 2+ and Pb 2+ from aqueous solution by waste brewery biomass. Bioprocess Engineering, 23(2), 135–141.
  • 19. Michalak I., Chojnacka K., Witek-Krowiak A. 2013. State of the art for the biosorption process– a review. Applied biochemistry and biotechnology, 170(6), 1389–1416.
  • 20. Muharrem I.N.C.E., Ince O.K. 2017. An overview of adsorption technique for heavy metal removal from water/wastewater: a critical review. International Journal of Pure and Applied Sciences, 3(2), 10–19.
  • 21. Musyoka S.M., Ngila J.C., Mamba B.B. 2013. Remediation studies of trace metals in natural and treated water using surface modified biopolimer nanofibers. Physics and Chemistry of the Earth, Parts A/B/C, 66, 45–50.
  • 22. Nawrocki J., Biłozor S. 2000. Uzdatnianie wody. Procesy chemiczne i biologiczne. Warszawa- Poznań: Wydawnictwo Naukowe PWN.
  • 23. Ofman P., Skoczko I. 2018. PAH removal effectiveness comparison from hydraulic fracturing model wastewater in SBR reactors with granular and flocked activated sludge. Desalination and Water Treatment, 134, 41–51.
  • 24. Ofman P., Skoczko I., Władarczyk-Makuła M. 2021. Biosorption of LMW PAHs on activated sludge aerobic granules under varying BOD loading rate conditions. Journal of Hazardous Materials, 418.
  • 25. Ofman P., Struk-Sokolowska J. 2019. Artificial Neural Network (ANN) Approach to Modelling of Selected Nitrogen Forms Removal from Oily Wastewater in Anaerobic and Aerobic GSBR Process Phases. Water, 11(8).
  • 26. Pan B., Pan B., Zhang W., Lv L., Zhang Q., Zheng S. 2009. Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chemical Engineering Journal, 151(1–3), 19–29.
  • 27. Qu X., Alvarez P.J., Li Q. 2013. Applications of nanotechnology in water and wastewater treatment. Water research, 47(12), 3931–3946.
  • 28. Rajczykowski K., Sałasińska O., Loska K. 2016. Chemiczna modyfikacja biosorbentów jako metoda zwiększania efektywności procesu biosorpcji cynku. Proceedings of ECOpole, 10.
  • 29. Reddad Z., Gerente C., Andres Y., Le Cloirec P. 2002. Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environmental science & technology, 36(9), 2067–2073.
  • 30. Sarbak Z. 2000. Adsorpcja i adsorbenty: Uniwersytet Imienia Adama Mickiewicza w Poznaniu: Seria Chemia.
  • 31. Shuhong Y., Meiping Z., Hong Y., Han W., Shan X., Yan L., Jihui W. 2014. Biosorption of Cu2+, Pb2+ and Cr6+ by a novel exopolysaccharide from Arthrobacter ps-5. Carbohydrate polymers, 101, 50–56.
  • 32. Stankovic S., Kalaba P., Stankovic A.R. 2014. Biota as toxic metal indicators. Environmental Chemistry Letters, 12(1), 63–84.
  • 33. Strelko Jr.V., Malik D.J., Streat M. 2005. Interpretation of transition metal sorption behavior by oxidized active carbons and other adsorbents. Separation science and technology, 39(8), 1885–1905.
  • 34. Suzaki P.Y.R., Munaro M.T., Triques C.C., Kleinübing S.J., Klen M.R.F., de Matos Jorge L. M., Bergamasco R. 2017. Biosorption of binary heavy metal systems: phenomenological mathematical modeling. Chemical Engineering Journal, 313, 364–373.
  • 35. Taseidifar M., Makavipour F., Pashley R.M., Rahman A.M. 2017. Removal of heavy metal ions from water using ion flotation. Environmental Technology & Innovation, 8, 182–190.
  • 36. Tjandraatmadja G., Diaper C., Gozukara Y., Burch L., Sheedy C., Price G. 2008. Sources of critical contaminants in domestic wastewater: contaminant contribution from household products. Report for the CSIRO: Water for a Healthy Country National Research Flagship.
  • 37. Vimala R., Das N. 2009. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study. Journal of hazardous materials, 168(1), 376–382.
  • 38. White P.J., Broadley M.R. 2009. Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182(1), 49–84.
  • 39. Zhao G., Wu X., Tan X., Wang X. 2010. Sorption of heavy metal ions from aqueous solutions: a review. The open colloid science journal, 4(1).
  • 40. Zhou W., Wang J., Shen B., Hou W., Zhang Y. 2009. Biosorption of copper (II) and cadmium (II) by a novel exopolysaccharide secreted from deep-sea mesophilic bacterium. Colloids and Surfaces B: Biointerfaces, 72(2), 295–302.
  • 41. Zou Y., Wang X., Khan A., Wang P., Liu Y., Alsaedi A., Wang, X. 2016. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environmental science & technology, 50(14), 7290–7304.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77362746-ff59-400d-8b8a-e63e15be33eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.