PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Does the sentiment of social media post affects positiveengagement of a fan base? : a study on lexiconand convolutional neural network sentiment classifierand ’large’ Twitter accounts

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are many open questions in this area of computer science that are very important from the perspective of the social media marketing. Among them is: "how to write the messages that are 'popular and liked'"? In this paper we will model and investigate one possible aspect of this issue: does sentiment of the social media post correlates with social engagement of fan base? We have modeled sentiment scoring of social media post using lexicon - based method and by state of the art convolutional neural network. The evaluation of those models has been performed using social media Twitter accounts of five worldknown politicians and celebrities, four brands, two bloggers and two users. We have investigated the various statistical dependencies between sentiment - based scores and engagement scores values. Basing on results we can concluded that number of favorites or shares (both are among the most popular engagement scoring methods that are present in most social media platforms) is not dependent on the sentiment of the message. It does not matter if posts have positive or negative sentiment. The results we have obtained are very important especially for researchers and business entities who utilizes social media platform. Large number of social media scoring algorithms utilizes some kind of binary sentiment analysis associated with social engagement scoring. Our results are strong indicators that two popular sentiment analysis methods should not be used as the predictors of mentioned social engagement scores. Our research can be easily reproduced because we publish both our data and source code of programs we used for evaluation.
Rocznik
Tom
Strony
23--37
Opis fizyczny
Twórcy
  • Pedagogical University of Krakow, Institute of Computer Science, 2 Podchorazych Ave, 30-084, Krakow, Poland
Bibliografia
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77335702-9407-4c2f-b335-076692b14b02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.