PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Aluminium members in composite structures - a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Elementy ze stopu aluminium w konstrukcjach zespolonych - przegląd
Języki publikacji
EN
Abstrakty
EN
This paper presents a review of composite structures in which aluminium alloys are used. Current trends in the research of composite structures with aluminium girders and their possible applications in structural engineering were shown. In the presented solutions, advantageous properties of aluminium alloys were exploited, such as high strength-to-weight ratio, corrosion resistance and recyclability. The authors demonstrated the structural behaviour of aluminium-concrete and aluminium-timber composite beams based on their own tests as well as investigations presented in the literature. Furthermore, aluminium-concrete composite columns, a composite mullion made of an aluminium alloy and timber, and a military bridge consisting of aluminium truss components, a stay-in-place-form, reinforcement and concrete were presented. In addition to the description of the structural elements, the main conclusions from their experimental, theoretical and numerical analyses were also demonstrated in this paper. The connection of aluminium girders with concrete or timber slabs provided for the increase of the load-bearing capacity and stiffness, and it eliminated the problem of local buckling in girder flanges and lateral-torsional buckling of girders in the analysed solutions.
PL
W pracy przedstawiono przegląd zespolonych konstrukcji, w których zastosowano stopy aluminium. Omówiono aktualne kierunki badań nad konstrukcjami zespolonymi z dźwigarami ze stopu aluminium oraz możliwe ich zastosowania w budownictwie. W prezentowanych rozwiązaniach wykorzystano zalety stopów aluminium m.in. korzystny stosunek wytrzymałości do ciężaru, odporność na korozję oraz przydatność do recyklingu. Autorzy opisali zachowanie belek zespolonych aluminiowo-betonowych oraz drewniano-betonowych, biorąc pod uwagę własne badania, jak i te znane z literatury. Dodatkowo, scharakteryzowano słupy zespolone aluminiowo-betonowe, słupek zespolony aluminiowo-drewniany zastosowany w konstrukcji fasadowej oraz wojskowy most składający się z kratownicy ze stopu aluminium, szalunku traconego, zbrojenia oraz betonu. Oprócz opisu elementów konstrukcyjnych, przedstawiono główne wnioski z ich analizy eksperymentalnej, teoretycznej oraz numerycznej. Połączenie dźwigarów ze stopu aluminium z płytami wykonanymi z betonu lub drewna zapewniło wzrost nośności oraz sztywności dźwigarów oraz wyeliminowano problem lokalnego wyboczenia pasa dźwigara oraz jego zwichrzenia.
Rocznik
Strony
253--274
Opis fizyczny
Bibliogr. 90 poz., il., tab.
Twórcy
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, Poznan, Poland
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, Poznan, Poland
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, Poznan, Poland
Bibliografia
  • [1] F.M. Mazzolani, “3D aluminium structures”, Thin-Walled Structures, 2012, vol. 61, pp. 258-266; DOI: 10.1016/j.tws.2012.07.017.
  • [2] M. Gwóźdź, “Problemy projektowe współczesnych konstrukcji aluminiowych”, Czasopismo Techniczne, 2007, Z4-A, pp. 281-286.
  • [3] T. Siwowski, “FEM modelling and analysis of a certain aluminium bridge deck panel”, Archives of Civil Engineering, 2009, vol. 55, no. 3, pp. 347-365.
  • [4] P. Kossakowski, “Stopy aluminium jako materiał konstrukcyjny ustrojów nośnych mostów”, Zeszyty Naukowe Politechniki Czestochowskiej. Budownictwo, 2016, vol. 22, no. 172, pp. 159-170; DOI: 10.17512/znb.2016.1.15.
  • [5] T. Dokšanović, I. Džeba, D. Markulak, “Applications of aluminium alloys in civil engineering”, Technical Gazette, 2017, vol. 24, no. 5, pp. 1609-1618; DOI: 10.17559/TV-20151213105944.
  • [6] N.H. Pham, C.H. Pham, K.J.R. Rasmussen, “Global buckling capacity of cold-rolled aluminium alloy channel section beams”, Journal of Constructional Steel Research, 2021, vol. 179, art. ID 106521; DOI: 10.1016/j.jcsr.2021.106521.
  • [7] F.M. Mazzolani, Aluminium Structural Design. Wien: Springer-Verlag GmbH, 2003.
  • [8] K. Mróz, I. Hager, K. Korniejenko, “Material solutions for passive fire protection of buildings and structures and their performances testing”, Procedia Engineering, 2016, vol. 151, pp. 284-291; DOI: 10.1016/j.proeng.2016.07.388.
  • [9] T. Kwiatkowski, “Aluminium w nowoczesnych konstrukcjach budowlanych”, Zeszyty Naukowe Politechniki Częstochowskiej. Budownictwo, 2012, vol. 18, no. 168, pp. 108-115.
  • [10] T. Siwowski, “Aluminium bridges - past, present and future”, Structural Engineering International, 2006, vol. 16, no. 4, pp. 286-293.
  • [11] T. Siwowski, “Structural behaviour of aluminium bridge deck panels”, Engineering Structures, 2009, vol. 31, no. 7, pp. 1349-1353; DOI: 10.1016/j.engstruct.2009.02.002.
  • [12] F.M. Mazzolani, A. Mandara, “Modern trends in the use of special metals for the improvement of historical and monumental structures”, Engineering Structures, 2002, vol. 24, no. 7, pp. 843-856; DOI: 10.1016/S0141-0296(02)00023-8.
  • [13] M. Gwóźdź, Konstrukcje aluminiowe. Projektowanie według Eurokodu 9. Kraków: Wydawnictwo Politechniki Krakowskiej, 2014.
  • [14] P. Kossakowski, W. Wciślik, M. Bakalarz, “Selected aspects of application of aluminium alloys in building structures”, Structure and Environment, 2017, vol. 9, no. 4, pp. 256-263.
  • [15] P. Lacki, A. Derlatka, “Strength evaluation of beam made of the aluminum 6061-T6 and titanium grade 5 alloys sheets joined by RFSSW and RSW”, Composite Structures, 2017, vol. 159, pp. 491-497; DOI: 10.1016/j.compstruct.2016.10.003.
  • [16] T. Siwowski, “Drogowe mosty aluminiowe - wczoraj, dziś i jutro”, Drogi i Mosty, 2005, vol. 1, pp. 39-74.
  • [17] J. Jasiczak, M. Hajkowski, “Podatność na korozję elewacji z blach aluminiowych w środowisku oczyszczalni ścieków”, Ochrona przed Korozją, 2008, vol. 5s/A, pp. 79-85.
  • [18] D. Skejić, I. Boko, N. Torić, “Aluminium as a material for modern structures”, Gradevinar, 2015, vol. 11, pp. 1075-1085; DOI: 10.14256/JCE.1395.2015.
  • [19] X. Yu, G. Xing, Z. Chang, “Flexural behavior of reinforced concrete beams strengthened with near-surface mounted 7075 aluminum alloy bars”, Journal of Building Engineering, 2020, vol. 31, art. ID 101393; DOI: 10.1016/j.jobe.2020.101393.
  • [20] J.A. Abdalla, A.S. Abu-Obeidah, R.A. Hawileh, H.A. Rasheed, “Shear strengthening of reinforced concrete beams using externally-bonded aluminum alloy plates: An experimental study”, Construction and Building Materials, 2016, vol. 128, pp. 24-37; DOI: 10.1016/j.conbuildmat.2016.10.071.
  • [21] Y. Xu, Q. Wang, M. Xie, Q. Wei, “Shear behavior of reinforced concrete beams strengthened with aluminum alloy sheets”, Huazhong Keji Daxue Xuebao (Ziran Kexue Ban) Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, vol. 48, no. 2, pp. 47-53; DOI: 10.13245/j.hust.200209.
  • [22] R. Scotta, L. Marchi, D. Trutalli, L. Pozza, “Engineered aluminium beams for anchoring timber buildings to foundation”, Structural Engineering International, 2017, vol. 27, no. 2, pp. 158-164; DOI: 10.2749/101686617X14881932435736.
  • [23] EN 1994-1-1, Eurocode 4, Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings. Brussels, Belgium: European Committee for Standardization, 2004.
  • [24] R.P. Johnson, Designers’ guide to Eurocode 4: Design of composite steel and concrete structures, EN 1994-1-1. London: ICE Publishing, 2012.
  • [25] T. Wróblewski, S. Berczyński, M. Abramowicz, “Estimation of the parameters of the discrete model of a steel-concrete composite beam”, Archives of Civil and Mechanical Engineering, 2013, vol. 13, no. 2, pp. 209-219; DOI: 10.1016/j.acme.2013.01.009.
  • [26] I. Jankowiak, W. Kąkol, A. Madaj, “Identyfikacja modelu numerycznego ciągłej belki zespolonej na podstawie badań laboratoryjnych”, in VII Konferencja Naukowa Konstrukcje Zespolone, Zielona Góra 15-16 czerwca 2005, T. Biliński, Ed. Zielona Góra: Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, 2005, pp. 163-178.
  • [27] P. Szewczyk, M. Szumigała, “Optimal design of steel-concrete composite beams strengthened under load”, Materials, 2021, vol. 14, no. 16, art. ID 4715; DOI: 10.3390/ma14164715.
  • [28] D. Dumović, B. Androić, I. Lukačević, Composite structures according to Eurocode 4, Worked Examples. Berlin: Ernst & Sohn, 2015.
  • [29] M. Kuczma, B. Kuczma, “Steel-concrete composite beams with elasto-plastic connection”, in Mathematical methods in continuum mechanics, K. Wilmański, B. Michalak, J. Jędrysiak, Eds. Lodz: Technical University of Lodz Press, 2011, pp. 451-464.
  • [30] M.V. Leskelä, Shear connections in composite flexural members of steel and concrete. Mem Martins: European Convention for Constructional Steelwork, Technical Committee 11, Composite Structures, No 138, 2017.
  • [31] M. Szumigała, M. Chybiński, Ł. Polus, “Stiffness of composite beams with full shear connection”, IOP Conference Series: Materials Science and Engineering, 2019, vol. 471, no. 5, art. ID 052083; DOI: 10.1088/ 1757-899X/471/5/052083.
  • [32] Ł. Polus, M. Szumigała, “Wpływ zespolenia na nośność i sztywność belki metalowej współpracującej z płytą betonową”, Inżynieria i Budownictwo, 2017, no. 6, pp. 320-324.
  • [33] M. Szumigała, M. Chybiński, Ł. Polus, “Composite beams with aluminium girders - a review”, in Modern trends in research on steel, aluminium and composite structures. Proceedings of the XIV International Conference on Metal Structures (ICMS2021), Poznan, Poland, 16-18 June 2021, M.A. Giżejowski, et al., Eds. Leiden: Routledge, 2021, pp. 249-255; DOI: 10.1201/9781003132134-30.
  • [34] Z. Kamyk, J. Szelka, “Military composite bridges”, in X Conference Composite Structures, T. Biliński, J. Korentz, Eds. Zielona Góra: University of Zielona Góra Publisher, 2014, pp. 245-254.
  • [35] J. Szelka, Z. Kamyk, “Kompozytowe mosty wojskowe”, Budownictwo i Architektura, 2013, vol. 12, no. 2, pp. 63-70.
  • [36] J.P. Hanus, J.C. Ray, L.C. Bank, G.I. Velazquez, “Optimized design and testing of a prototype military bridge system for rapid in-theater construction”, in Proceedings of the 25th Army Science Conference - Transformational Army Science and Technology, 27-30 November 2006, Orlando. 2006, pp. 1-8.
  • [37] Y. Chen, R. Feng, J. Xu, “Flexural behaviour of CFRP strengthened concrete filled aluminium alloy CHS tubes”, Construction and Building Materials, 2017, vol. 142, pp. 295-319; DOI: 10.1016/j.conbuildmat. 2017.03.040.
  • [38] W.L.A. Oliveira, S. De Nardin, A.L.H.C. El Debs, M.K. El Debs, “Evaluation of passive confinement in CFT columns”, Journal of Constructional Steel Research, 2010, vol. 66, no. 4, pp. 487-495; DOI: 10.1016/j.jcsr.2009.11.004.
  • [39] B. Grzeszykowski, “Wpływ rozwiązań materiałowo-konstrukcyjnych na ciągliwość słupów ściskanych osiowo”, Ph.D. thesis, Warsaw University of Technology, Poland, 2021.
  • [40] H.T. Hu, C.S. Huang, M.H. Wu, Y.M. Wu, “Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect”, Journal of Structural Engineering, 2003, vol. 129, no. 10, pp. 1322-1329; DOI: 10.1061/(ASCE)0733-9445(2003)129:10(1322).
  • [41] F. Zhou, B. Young, “Tests of concrete-filled aluminum stub columns”, Thin-Walled Structures, 2008, vol. 46, no. 6, pp. 573-583; DOI: 10.1016/j.tws.2008.01.003.
  • [42] F. Zhou, B. Young, “Concrete-filled aluminium circular hollow section column tests”, Thin-Walled Structures, 2009, vol. 47, no. 11, pp. 1272-1280; DOI: 10.1016/j.tws.2009.03.014.
  • [43] J.-Y. Zhu, T.-M. Chan, “Experimental investigation on octagonal concrete filled steel stub columns under uniaxial compression”, Journal of Constructional Steel Research, 2018, vol. 147, pp. 457-467; DOI: 10.1016/j.jcsr.2018.04.030.
  • [44] E. Szmigiera, B. Grzeszykowski, M. Szadkowska, “Concrete confinement estimation in composite steel-concrete columns”, in Recent Progress in Steel and Composite Structures: Proceedings of the XIII International Conference on Metal Structures (ICMS2016, Zielona Góra, Poland, 15-17 June 2016), M.A. Gizejowski, et al., Eds. Leiden: CRC Press, 2016, pp. 117-124; DOI: 10.1201/b21417-16.
  • [45] C. Yang, Z.X. Yu, Y.P. Sun, L. Zhao, H. Zhao, “Axial residual capacity of circular concrete-filled steel tube stub columns considering local buckling”, Advanced Steel Construction, 2018, vol. 14, no. 3, pp. 496-513; DOI: 10.18057/IJASC.2018.14.3.11.
  • [46] Y. Zhu, Y. Chen, K. He, R. Feng, X. Zhang, Q. Zhu, C. Tang, “Flexural behavior of concrete-filled SHS and RHS aluminum alloy tubes strengthened with CFRP”, Composite Structures, 2020, vol. 238, art. ID 111975; DOI: 10.1016/j.compstruct.2020.111975.
  • [47] B. Grzeszykowski, M. Szadkowska, E. Szmigiera, “Analysis of stress in steel and concrete in CFST pushout test samples”, Civil and Environmental Engineering Reports, 2017, vol. 26, no. 3, pp. 145-159; DOI: 10.1515/ceer-2017-0042.
  • [48] M. Szadkowska, E. Szmigiera, “Bond between steel and self-compacting concrete in composite tube columns”, Archives of Civil Engineering, 2017, vol. 63, no. 2, pp. 131-143; DOI: 10.1515/ace-2017-0021.
  • [49] E. Szmigiera, P. Woyciechowski, “Influence of the compaction method on the bond between steel and concrete in composite columns”, Periodica Polytechnica Civil Engineering, 2013, vol. 57, no. 2, pp. 129-137; DOI: 10.3311/PPci.7169.
  • [50] M. Szumigała, Ł. Polus, “Applications of aluminium and concrete composite structures”, Procedia Engineering, 2015, vol. 108, pp. 544-549.
  • [51] R. Mromliński, Aluminium structures. Warszawa, Poland: Arkady, 1975.
  • [52] M. Chybiński, Ł. Polus, “Bending resistance of metal-concrete composite beams in a natural fire”, Civil and Environmental Engineering Reports, 2018, vol. 4, no. 28, pp. 149-162; DOI: 10.2478/ceer-2018-0058.
  • [53] Ł. Polus, M. Chybiński, M. Szumigała, “Nośność na zginanie belek zespolonych metalowo-betonowych w warunkach pożaru standardowego”, Przegląd Budowlany, 2018, no. 7-8, pp. 128-132.
  • [54] E. Szmigiera, M. Niedośpiał, B. Grzeszykowski, Projektowanie konstrukcji zespolonych stalowo-betonowych. Warszawa, Poland: Wydawnictwo Naukowe PWN, 2019.
  • [55] Z. Kurzawa, Ł. Polus, M. Szumigała, Stany graniczne i odporność pożarowa elementów stalowych według Eurokodu 3. Poznań, Poland: Wydawnictwo Politechniki Poznańskiej, 2016.
  • [56] J. Stonehewer, “A study of composite concrete-aluminum beams”, M.A. thesis, McGill University, Montreal, Canada, 1962.
  • [57] E. Bruzzese, M. Cappelli, F.M. Mazzolani, “Experimental investigation on aluminium-concrete beams”, Construzioni Metalliche, 1989, vol. 5, pp. 265-282.
  • [58] A. Mandara, F.M. Mazzolani, “Plastic design of aluminium-concrete composite sections: a simplified method”, in Proceedings of the International Conference on Composite Construction - Conventional and Innovative, Innsbruck, Austria, 16-18 September 1997, M.W. Braestrup, Ed. Zurich: International Association for Bridge and Structural Engineering, 1997, pp. 349-354.
  • [59] T. Siwowski, “Test and Finite Element Analysis of an “Aluminium - Lightweight Concrete” Composite Girder”, Structural Engineering International, 2006, vol. 4, pp. 319-325.
  • [60] Ł. Polus, M. Szumigała, “An experimental and numerical study of aluminium-concrete joints and composite beams”, Archives of Civil and Mechanical Engineering, 2019, vol. 19, no. 2, pp. 375-390; DOI: 10.1016/j.acme.2018.11.007.
  • [61] Ł. Polus, “An Analysis of Load Bearing Capacity and Stiffness of Aluminium-Concrete Composite Elements Subjected to Bending”, Ph.D. thesis, Poznan University of Technology, Poland, 2021.
  • [62] A. Ataei, A.A. Chiniforush, M. Bradford, H. Valipour, “Cyclic behaviour of bolt and screw shear connectors in steel-timber composite (STC) beams”, Journal of Constructional Steel Research, 2019, vol. 161, pp. 328-340; DOI: 10.1016/j.jcsr.2019.05.048.
  • [63] A. Biegus, W. Lorenc, “Development of shear connections in steel-concrete composite structures”, Civil and Environmental Engineering Reports, 2014, vol. 15, no. 4, pp. 23-32; DOI: 10.1515/ceer-2014-0032.
  • [64] P. Lacki, A. Derlatka, P. Kasza, S. Gao, “Numerical study of steel-concrete composite beam with composite dowels connectors”, Computers & Structures, 2021, vol. 255, art. ID 106618; DOI: 10.1016/j.compstruc.2021.106618.
  • [65] J. Nie, C.S. Cai, T. Wang, “Stiffness and capacity of steel-concrete composite beams with profiled sheeting”, Engineering Structures, 2005, vol. 27, no. 7, pp. 1074-1085; DOI: 10.1016/j.engstruct.2005.02.016.
  • [66] M. Patrick, “Experimental investigation and design of longitudinal shear reinforcement in composite edge beams”, Progress in Structural Engineering and Materials, 2000, vol. 2, pp. 196-217.
  • [67] S. Ernst, R.Q. Bridge, A. Wheeler, “Push-out tests and a new approach for the design of secondary composite beam shear connections”, Journal of Constructional Steel Research, 2009, vol. 65, no. 1, pp. 44-53; DOI: 10.1016/j.jcsr.2008.04.010.
  • [68] A. Kozma, C. Odenbreit, M.V. Braun, M. Veljkovic, M.P. Nijgh, “Push-out tests on demountable shear connectors of steel-concrete composite structures”, Structures, 2019, vol. 21, pp. 45-54; DOI: 10.1016/j.istruc.2019.05.011.
  • [69] M. Pavlović, Z. Marković, M. Veljković, D. Budevac, “Bolted shear connectors vs. headed studs behaviour in push-out tests”, Journal of Constructional Steel Research, 2013, vol. 88, pp. 134-149; DOI: 10.1016/j.jcsr.2013.05.003.
  • [70] M. Szumigała, Ł. Polus, “A numerical simulation of an aluminium-concrete beam”, Procedia Engineering, 2017, vol. 172, pp. 1086-1092.
  • [71] Ł. Polus, M. Szumigała, “Theoretical and numerical analyses of an aluminium-concrete composite beam with channel shear connectors”, Engineering Transactions, 2019, vol. 67, no. 4, pp. 535-556; DOI: 10.24423/EngTrans.984.20190802.
  • [72] S. Jiao, S. Gunalan, B.P. Gilbert, B. Baleshan, H. Bailleres, “Experimental investigation of an innovative composite mullion made of aluminium and timber”, Journal of Building Engineering, 2021, vol. 38, art. ID 101907; DOI: 10.1016/j.jobe.2020.101907.
  • [73] M. Szumigała, M. Chybiński, Ł. Polus, “Preliminary analysis of the aluminium-timber composite beams”, Civil and Environmental Engineering Reports, 2017, vol. 27, no. 4, pp. 131-141; DOI: 10.1515/ceer-2017-0056.
  • [74] A.M. Harte, “Timber engineering: an introduction”, in ICE Manual of Construction Materials: Volume I/II: Fundamentals and theory; Concrete; Asphalts in road construction; Masonry, M. Forde, Ed. ICE Publishing, Chapter 60, 2009.
  • [75] J. Porteous, A. Kermani, Structural Timber Design to Eurocode 5. Chichester, UK: Wiley-Blackwell, 2013.
  • [76] J. Marcinowski, “Naprężenia w warstwowej konstrukcji zespolonej z materiałów o różnej rozszerzalności termicznej”, Materiały Budowlane, 2018, no. 4, pp. 107-109.
  • [77] R. Gitter, “Design of aluminium structures: Selection of structural alloys. Structural design according to Eurocode 9: Essential properties of materials and background information”, presented at the workshop: Eurocodes, Background and Applications, Session EN 1999-Eurocode 9: Design of Aluminium Structures, 20 February 2008, Brussels, Belgium, 2008.
  • [78] A.A. Chiniforush, A. Akbarnezhad, H. Valipour, S. Malekmohammadi, “Moisture and temperature induced swelling/shrinkage of softwood and hardwood glulam and LVL: An experimental study”, Construction and Building Materials, 2019, vol. 207, pp. 70-83; DOI: 10.1016/j.conbuildmat.2019.02.114.
  • [79] F. Riola-Parada, “Timber-steel hybrid beams for multi-storey buildings”, Ph.D. thesis, TU Wien, Austria, 2016.
  • [80] S.M. Saleh, “Behavior of timber-aluminum composite beams under static and impact loads”, Ph.D. thesis, University of Basrah, Iraq, 2014.
  • [81] S.M. Saleh, N.A. Jasim, “Structural behavior of timber aluminum composite beams under impact loads”, International Journal of Scientific and Engineering Research, 2014, vol. 5, no. 10, pp. 865-873.
  • [82] S.M. Saleh, N.A. Jasim, “Structural behavior of timber aluminum composite beams under static loads”, International Journal of Engineering Research and Technology, 2014, vol. 3, no. 10, pp. 1166-1173.
  • [83] B. Kuczma, “Analiza statyczno-wytrzymałościowa zespolonych belek stalowo-betonowych o podatnych łacznikach”, Ph.D. thesis, University of Zielona Góra, Poland, 2011.
  • [84] M. Chybiński, Ł. Polus, “Experimental and numerical investigations of laminated veneer lumber panels”, Archives of Civil Engineering, 2021, vol. 67, no. 3, pp. 351-372; DOI: 10.24425/ace.2021.138060.
  • [85] M. Chybiński, Ł. Polus, W. Szymkuć, “Zastosowanie drewna klejonego warstwowo z fornirów LVL w budownictwie”, Przegląd Budowlany, 2021, no. 5-6, pp. 44-50.
  • [86] M. Chybiński, Ł. Polus, M. Szumigała, “Zastosowanie elementów drewnianych w belkach zespolonych”, Inżynieria i Budownictwo, 2021, no. 5-6, pp. 247-249.
  • [87] M. Chybiński, Ł. Polus, “Theoretical, experimental and numerical study of aluminium-timber composite beams with screwed connections”, Construction and Building Materials, 2019, vol. 226, pp. 317-330; DOI: 10.1016/j.conbuildmat.2019.07.101.
  • [88] M. Chybiński, Ł. Polus, “Experimental and numerical investigations of aluminium-timber composite beams with bolted connections”, Structures, 2021, vol. 34, pp. 1942-1960; DOI: 10.1016/j.istruc.2021.08.111.
  • [89] M. Chybiński, Ł. Polus, “Mechanical behaviour of aluminium-timber composite connections with screws and toothed plates”, Materials,2022, vol. 15, no. 1, art. ID 68; DOI: 10.3390/ma15010068.
  • [90] M. Chybiński, Ł. Polus, “Withdrawal strength of hexagon head wood screws in laminated veneer lumber”, European Journal of Wood and Wood Products, 2022, vol. 80, no. 5; DOI: 10.1007/s00107-022-01797-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-772f4597-ffc2-4e1d-9f74-5c2be661a529
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.