Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Modern industry requires an increasing level of efficiency in a lightweight design. To achieve these objectives, easy-to-apply numerical tests can help in finding the best method of topological optimization for practical industrial applications. In this paper, several numerical benchmarks are proposed. The numerical benchmarks facilitate qualitative comparison with analytical examples and quantitative comparison with the presented numerical solutions. Moreover, an example of a comparison of two optimization algorithms was performed. That was a commonly used SIMP algorithm and a new version of the CCSA hybrid algorithm of topology optimization. The numerical benchmarks were done for stress constraints and a few material models used in additive manufacturing.
Rocznik
Tom
Strony
art. no. e139317
Opis fizyczny
Bibliogr. 26 poz., il., tab.
Twórcy
autor
- Opole University of Technology, Faculty of Mechanical Engineering, ul. Mikołajczyka 5, 45-271 Opole, Poland
autor
- Opole University of Technology, Faculty of Mechanical Engineering, ul. Mikołajczyka 5, 45-271 Opole, Poland
Bibliografia
- [1] S.I. Valdez, S. Botello, M.A. Ochoa, J.L. Marroquín, and V. Cardoso, “Topology Optimization Benchmarks in 2D: Results for Minimum Compliance and Minimum Volume in Planar Stress Problems,” Arch. Comput. Methods Eng., vol. 24, no. 4, pp. 803–839, Nov. 2017, doi: 10.1007/s11831-016-9190-3.
- [2] M. Fanni, M. Shabara, and M. Alkalla, “A Comparison between Different Topology Optimization Methods,” Bull. Fac. Eng. Mansoura Univ., vol. 38, no. 4, pp. 13–24, Jul. 2020, doi: 10.21608/bfemu.2020.103788.
- [3] S. Rojas-Labanda and M. Stolpe, “Benchmarking optimization solvers for structural topology optimization,” Struct. Multidiscip. Optim., vol. 52, no. 3, pp. 527–547, Sep. 2015, doi: 10.1007/s00158-015-1250-z.
- [4] D. Yang, H. Liu,W. Zhang, and S. Li, “Stress-constrained topology optimization based on maximum stress measures,” Comput. Struct., vol. 198, pp. 23–39, Mar. 2018, doi: 10.1016/j.compp-struc.2018.01.008.
- [5] D. Pasini, A. Moussa, and A. Rahimizadeh, “Stress-Constrained Topology Optimization for Lattice Materials,” in Encyclopedia of Continuum Mechanics, Berlin, Heidelberg: Springer Berlin Heidelberg, 2018, pp. 1–19.
- [6] E. Lee, K.A. James, and J.R.R.A. Martins, “Stress-constrained topology optimization with design-dependent loading,” Struct. Multidiscip. Optim., vol. 46, no. 5, pp. 647–661, Nov. 2012, doi: 10.1007/s00158-012-0780-x.
- [7] L. Xia, L. Zhang, Q. Xia, and T. Shi, “Stress-based topology optimization using bi-directional evolutionary structural optimization method,” Comput. Methods Appl. Mech. Eng., vol. 333, pp. 356–370, May 2018, doi: 10.1016/j.cma.2018.01.035.
- [8] S. Bulman, J. Sienz, and E. Hinton, “Comparisons between algorithms for structural topology optimization using a series of benchmark studies,” Comput. Struct., vol. 79, no. 12, pp. 1203–1218, May 2001, doi: 10.1016/S0045-7949(01)00012-8.
- [9] G.I.N. Rozvany, “Exact analytical solutions for some popular benchmark problems in topology optimization,” Struct. Optim., vol. 15, no. 1, pp. 42–48, Feb. 1998, doi: 10.1007/BF01197436.
- [10] G.I.N. Rozvany, “A critical review of established methods of structural topology optimization,” Struct. Multidiscip. Optim., vol. 37, no. 3, pp. 217–237, Jan. 2009, doi: 10.1007/s00158-007-0217-0.
- [11] T. Lewiński and G.I.N. Rozvany, “Analytical benchmarks for topological optimization IV: Square-shaped line support,” Struct. Multidiscip. Optim., vol. 36, no. 2, pp. 143–158, Aug. 2008, doi: 10.1007/s00158-007-0205-4.
- [12] A. Verbart, M. Langelaar, and F. van Keulen, “Damage approach: A new method for topology optimization with local stress constraints,” Struct. Multidiscip. Optim., vol. 53, no. 5, pp. 1081–1098, May 2016, doi: 10.1007/s00158-015-1318-9.
- [13] S. Goo, S. Wang, J. Hyun, and J. Jung, “Topology optimization of thin plate structures with bending stress constraints,” Comput. Struct., vol. 175, pp. 134–143, Oct. 2016, doi: 10.1016/j.compstruc.2016.07.006.
- [14] E. Holmberg, B. Torstenfelt, and A. Klarbring, “Stress constrained topology optimization,” Struct. Multidiscip. Optim., vol. 48, no. 1, pp. 33–47, Jul. 2013, doi: 10.1007/s00158-012-0880-7.
- [15] E. Holmberg, Topology optimization considering stress, fatigue and load uncertainties. Linköping University Electronic Press, 2015.
- [16] L. He, M. Gilbert, T. Johnson, and T. Pritchard, “Conceptual design of AM components using layout and geometry optimization,” Comput. Math. with Appl., vol. 78, no. 7, pp. 2308–2324, Oct. 2019, doi: 10.1016/j.camwa.2018.07.012.
- [17] M. Mrzygłód, “Multi-constrained topology optimization using constant criterion surface algorithm,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 2, pp. 229–236, Oct. 2012, doi: 10.2478/v10175-012-0030-9.
- [18] M. Zhou and G.I.N. Rozvany, “The COC algorithm, Part II: Topological, geometrical and generalized shape optimization,” Comput. Methods Appl. Mech. Eng., vol. 89, no. 1–3, pp. 309–336, Aug. 1991, doi: 10.1016/0045-7825(91)90046-9.
- [19] M.P. Bendsøe and O. Sigmund, Topology Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
- [20] M.W. Mrzygłód, “Alternative quasi-optimal solutions in evolutionary topology optimization,” in AIP Conference Proceedings, 2018, vol. 1922, p. 020007-1‒020007-7, doi: 10.1063/1.5019034.
- [21] G. Fiuk and M.W. Mrzygłód, “Topology optimization of structures with stress and additive manufacturing constraints,” J. Theor. Appl. Mech., vol. 58, no. 2, pp. 459–468, Apr. 2020, doi: 10.15632/jtam-pl/118899.
- [22] M. Mrzygłód and T. Kuczek, “Uniform crashworthiness optimization of car body for high-speed trains,” Struct. Multidiscip. Optim., vol. 49, no. 2, pp. 327–336, Feb. 2014, doi: 10.1007/s00158-013-0972-z.
- [23] P. Duda and M.W. Mrzygłód, “Shape and operation optimization of a thick-walled power boiler component,” in MATEC Web of Conferences, Nov. 2018, vol. 240, p. 05006, doi: 10.1051/matecconf/201824005006.
- [24] T. Lewiński and G.I.N. Rozvany, “Exact analytical solutions for some popular benchmark problems in topology optimization III: L-shaped domains,” Struct. Multidiscip. Optim., vol. 35, no. 2, pp. 165–174, Feb. 2008, doi: 10.1007/s00158-007-0157-8.
- [25] N. Olhoff, J. Rasmussen, and M.P. Bendsøe, “On CADIntegrated Structural Topology and Design Optimization,” in Evaluation of Global Bearing Capacities of Structures, Vienna: Springer Vienna, 1993, pp. 255–280.
- [26] A.G.M. Michell, “LVIII. The limits of economy of material in frame-structures,” London, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 8, no. 47, pp. 589–597, 1904, doi: 10.1080/14786440409463229.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-772e35de-5da7-436d-b82c-659e190898b2