PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tissue characterization with ballistic photons: counting scattering and/or absorption centres

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Advanced Infrared Technology and Applications - AITA 2013 (12 ; 10-13.09.2013 ; Turin, Italy)
Języki publikacji
EN
Abstrakty
EN
We describe a new method to separate ballistic from the scattered photons for optical tissue characterization. It is based on the hypothesis that the scattered photons acquire a phase delay. The photons passing through the sample without scattering or absorption preserve their coherence so they may participate in interference. We implement a Mach-Zehnder experimental setup where the ballistic photons pass through the sample with the delay caused uniquely by the sample indices of refraction. We incorporate a movable mirror on the piezoelectric actuator in the sample arm to detect the amplitude of the modulation term. We present the theory that predicts the path-integrated (or total) concentration of the scattering and absorption centres. The proposed technique may characterize samples with transmission attenuation of ballistic photons by a factor of 10-14.
Twórcy
autor
  • Centro de Investigaciones en Optica, Apdo. Postal 1-948, C. P. 37000, León, Guanajuato, México
autor
  • Centro de Investigaciones en Optica, Apdo. Postal 1-948, C. P. 37000, León, Guanajuato, México
autor
  • Centro de Investigaciones en Optica, Apdo. Postal 1-948, C. P. 37000, León, Guanajuato, México
Bibliografia
  • 1. M. Bondani, D. Redaelli, A. Spinelli, A. Andreoni, G. Roberti, P. Riccio, R. Luizzi, and I. Rech, “Photon time-of-flight distributions through turbid media directly measured with single-photon avalanche diodes,” JOSA 20, 2383-2388 (2003).
  • 2. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Dexler, V. Yakovlev, G. Tempea, C. Schubert, E.M. Anger, P.K. Ahnelt, M. Stur, J.E. Morgan, A. Cowey, G. Jung, and A. Stingl, “Compact, low-cost TkALOj laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 28, 905-907 (2003).
  • 3. E. Choi, J. Na, S.Y. Ryu, G. Mudhana, and B.H. Lee, “All-fibre variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,” Opt. Exp. 13, 1334-1345 (2005).
  • 4. J.B. Vakoc, S.H. Yun, J.F. de Boer, G.J. Tearney, and B.E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Exp. 13, 5483-5493 (2005).
  • 5. C.W. Sun, Y.M. Wang, L.S. Lu, C.W. Lu, I.J. Hsu, M.T. Tsai, C.C. Yang, Y.W. Kiang, and C.C. Wu, “Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultra-short pulsed laser,”.J. Biomed. Opt. 11, 054016 (2006).
  • 6. L. Wang, P.P. Ho, C. Liu, G. Zhang, and R.R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769-771 (1991).
  • 7. S.G. Demos and R.R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161-163 (1996).
  • 8. G. Jarry, E. Steimer, V. Damaschini, M. Epifanie, M. Jurczak, and R. Kaiser, “Coherence and polarization of light propagating through scattering media and biological tissues,” Appl. Opt. 37, 7357-7367 (1998).
  • 9. A.E. Desjardins, B.J. Vakoc, A. Bilenca, G.J. Tearney, and B.E. Bouma, “Estimation of the scattering coefficients of turbid media using angle-resolved optical frequency-domain imaging,” Opt. Lett. 32, 1560-1562 (2007).
  • 10. S. Andersson-Engels, R. Berg, S. Svanberg, and O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179-1 181 (1990).
  • 11. D.G. Papaioannou, G.W. Hooft, J.J. Baselmans, and M.J. van Gemert, “Image quality in time-resolved transillumination t. 34, 6144-6157 (1995).
  • 12. G. Le Tolguenec, F. Devaux, and E. Lantz, “Two-dimensional time-resolved direct imaging through thick biological tissues: a new step toward non-invasive medical imaging,” Opt. Lett. 24, 1047-1049 (1998).
  • 13. M.R. Hee, J.A. Izatt, E.A. Swanson, and J.G. Fujimoto, “Femtosecond transillumination tomography in thick tissues,” Opt. Lett. 18, 1107-1109 (1993).
  • 14. D. Grosenick, H. Wabnitz, and H. Rinneberg, “Time-resolved imaging of solid phantoms for optical mammography,” Appl. Opt. 36, 221-231 (1997).
  • 15. X. Liang, L. Wang, P.P. Ho, and R.R. Alfano, “Time-resolved polarization shadowgrams in turbid media,” Appl. Opt. 36, 2984-2989 (1997).
  • 16. B. Devaraj, M. Usa, K.P. Chan, T. Akatsuka, and H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissues in vivo and in vitro,” IEEE J. Set. Top. Quantum Electron. 2, 1008-1016 (1996).
  • 17. Y. Watanabc, T. Yuasa, B. Devaraj, T. Akatsuka, and H. Inaba, “Transillumination computed tomography of high scattering media using laser linewidth broadening projections,” Opt. Commun. 174, 383-389 (2000).
  • 18. C. W. Sun, K.C. Liu, Y.M. Wang, H.H. Wang, Y.W. Kiang, H.K. Liu, and C.C. Yang, “Determination of target depth in a turbid medium with polarization-dependent transmitted signals,” J. Opt. Soc. Am. A20, 2106-2112 (2003).
  • 19. Y. Sasaki, S. Tanosaki, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “Fundamental imaging properties of transillumination laser CT using optical fibre applicable to bio-medical sensing,” IEEE Sens. J. 3, 658-667 (2003).
  • 20. H.J. van Staveren, C.J. Moes, J. van Marle, S.A. Prahl, and M.J. van Gcmcrt, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507-4514(1991).
  • 21. J. Bai, T. Gao, K. Ying, and N. Chen, “Locating inhomogeneities in tissue by using the most probable diffuse path of light,” J. Biomed. Opt. 10, 024024 (2005).
  • 22. G. Jarry, L. Poupinet, J. Watson, and T. Lepine, “Extinction measurements in diffusing mammalian tissue with heterodyne detection and a titanium: sapphire laser,” Appl. Opt. 34, 2045-2054(1995).
  • 23. R. Jones, G. Huynh, G. Jones, and D. Fried, “Near-infrared trans-illumination at 1310-nm for the imaging of early dental decay,” Opt. Exp. 11, 2259-2265 (2003).
  • 24. M. Strojnik, G. Paez, R. Murty, “Lateral shearing interferomtry,” in Optical Shop Testing, D. Malacara, Ed., Marcel Dekker, pp. 649-700, 2007.
  • 25. G. Popescu and A. Dogariu, “Ballistic attenuation of low-coherence optical fields,” Appl. Opt. 39, 4469-1472 (2000).
  • 26. P. Vacas-Jacques, G. Paez, and M. Strojnik, “Pass-through photon-based biomedical trans-illumination,” J. Biomed. Opt. 13, 041307 (2008); doi: 10.1117/1.2953191.
  • 27. M.D. Modeli, V. Ryabukho, D. Lyakin, V. Lychagov, E. Vitkin, I. It/.kan, and L.T. Pcrelman, “Autocorrelation low coherence interferometry,” Opt. Commun. 281, 1991-1996 (2008).
  • 28. G. Paez, M. Strojnik, M.K. Scholl, “Interferometrie tissue characterization: I. Theory,” Proc. SPIE 5883, 58830YI -12, (2005).
  • 29. P. Vacas-Jacques, M. Strojnik, G. Paez, “Forward-calculated analytical interferograms in pass-through photon-based biomedical transillumination,” JOSA A26, 602-612 (2009); DOI: 10.1364/JOSAA.26.000602.
  • 30. M. Strojnik and G Paez, “Spectral dependence of absorption sensitivity on concentration of oxygenated hemoglobin: pulse oximetry implications,” J. Biomed. Opt. 18, 108001 (2013); doi: 10.1117/l.JBO.18.10.108001.
  • 31. M.S. Scholl, “Measured spatial properties of the CW Nd-YAG laser beam,” Appl. Opt. 19, 3655-3659 (1980), doi:10.1364/AO.19.003655.
  • 32. M.S. Scholl. “Target temperature distribution generated and maintained by a scanning laser beam,” Appl. Opt. 21, 2146-2152 (1982); doi: 10.1364/A0.21.002146.
Uwagi
EN
The CONACYT, Mexican National Science Foundation, provided funding to perform this research.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-772cbd2e-eb8a-42ec-ab4f-f4b35ce74f84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.