PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrical resistivity tomography for geo-engineering investigation of subsurface defects: a case study of Etioro-Akoko highway, Ondo State, southwestern Nigeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The durability of roads is dependent on the proper screening of the variations in subsurface geological characteristics and conditions through geo-engineering investigations and good construction practices. In this study, electrical resistivity tomography (ERT) technique was used to investigate the subsurface defects and potential failures along the substrate of Etioro-Akoko highway, Ondo State, southwestern Nigeria. Results of the inverse model resistivity sections generated for the two investigated traverses showed four distinct subsurface layers. The shallow clayey topsoil, weathered layer, and partially weathered/fractured bedrock have resistivity values ranging from 4–150 ohm-m, 10–325 ohm-m, and 205–800 ohm-m, with thickness values of 0–2 m, 0.5–12.5 m, and less than few meters to > 24 m, respectively. The fresh bedrock is characterised by resistivity generally in excess of 1000 ohm-m. The bedrock mirrored gently to rapidly oscillating bedrock troughs and relatively inclined deep penetrating multiple fractures: F1–F'1, F2–F'2 and F3–F'3, with floater in-between the first two fractures. These delineated subsurface characteristic features were envisaged as potential threats to the pavement of the highway. Pavement failures in the area could be attributed to the incompetent clayey sub-base/substrate materials and the imposed stresses on the low load-bearing fractured bedrock and deep weathered troughs by heavy traffics. Anticipatory construction designs that included the use of competent sub-base materials and bridges for the failed segments and fractured zones along the highway, respectively, were recommended.
Czasopismo
Rocznik
Strony
101--107
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Department of Earth Sciences, Adekunle Ajasin University, P.M.B. 001 Akungba-Akoko, Ondo State, Nigeria
  • Department of Earth Sciences, Adekunle Ajasin University, P.M.B. 001 Akungba-Akoko, Ondo State, Nigeria
  • Department of Earth Sciences, Adekunle Ajasin University, P.M.B. 001 Akungba-Akoko, Ondo State, Nigeria
Bibliografia
  • Abu-Zeid, N., 1994. Investigation of channel seepage areas at the existing Kaffrein dam site (Jordan) using electrical-resistivity measurements. Journal of Applied Geophysics 32, 163–175.
  • Aigbedion, I., 2007. Geological and geophysical evidence for the road failures in Edo state, Nigeria. Environmental Geology, 101–103.
  • Akingboye, A.S., Ogunyele, A.C., 2019. Insight into seismic refraction and electrical resistivity tomography techniques in subsurface investigations. The Mining-Geology Petroleum Engineering Bulletin (MGPB) 34 (1), 93–111. https://doi.org/10.17794/ rgn.2019.1.9
  • Akingboye, A.S., Osazuwa, I.B., Mohammed, M.Z., 2019. Electrical resistivity tomography for sustainable groundwater development in a complex geological area. Materials and Geoenvironment 66 (2), 121–128. https://doi.org/10.2478/rmzmag-2019-0004
  • Ayolabi, E.A., Folorunso, A.F., Jegede, O.E., 2012. An Application of 2D Electrical Resistivity Tomography in Geotechnical Investigation of Foundation Defects: A Case Study. Journal of Geology and Mining Research 3 (12), 142–151. http://doi.org/10.5897/JGMR12.002
  • Egwuonwu, G.N., Ibe, S.O., Osazuwa, I.B., 2011. Geophysical Assessment of Foundation Depths around a Leaning Superstructure in Zaria Area, Northwestern Nigeria using Electrical Resistivity Tomography, The Pacific Journal of Science and Technology 12 (1), 472–486.
  • Fadele, S.I., Jatau, B.S., Goki, N.G., 2013. Subsurface Structural Characterization of Filatan Area, Zaria-Kano Road, using the 2D Electrical Resistivity Tomography. Journal of Earth Sciences and Geotechnical Engineering 3 (1), 73–83.
  • Ganerød, G.V., Rønning, J.S., Dalsegg, E., Elvebakk, H., Holmøy, K., Nilsen, B. Braathen A., 2006. Comparison of geophysical methods for sub-surface mapping of faults and fracture zones in a section of the Viggja road tunnel. Norway. Bulletin of Engineering Geology and the Environment 65, 231–243. https://doi.org/10.1007/s10064-006-0041-6
  • Loke, M.H., Chambers, J.E., Rucker, D.F., Kuras, O., Wilkinson, P.B., 2013. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics 95, 135–156.
  • Maślakowski, M., Kowalczyk, S., Mieszkowski, R., Józefiak, K., 2014. Using electrical resistivity tomography (ERT) as a tool in Geotechnical investigation of the subsurface of a highway. Studia Quaternaria 31 (2), 83–89. https://doi.org/10.2478/squa-2014-0008
  • Merritt, A.J., 2014. 4D Geophysical Monitoring of Hydrogeology Precursors to Landslide Activation. PhD Thesis, School of Earth and Environmental, University of Leeds, UK. 276 p.
  • Ngan-Tillard, D., Venmans, A., Slob, E., Mulder, A., 2010. Total engineering geology approach applied to motorway construction and widening in the Netherlands: Part II: Pilot site in tidal deposits. Engineering Geology 114, 171–180. https://doi.org/10.1016/j.enggeo. 2010.04.015
  • Nordiana, M.M., Bery, A.A., Taqiuddin, Z.M., Jinmin, M., Abir, I.A., 2018. 2-D Electrical Resistivity Tomography (ERT) Assessment of Ground Failure in Urban Area. IOP Conf. Series: Journal of Physics: Conf. Series, 995 012076. https://doi.org/10.1088/1742-6596/ 995/1/012076
  • Obaje, N.G., 2009. Geology and Mineral Resources of Nigeria. Heidelberge,Berlin: Springer-Verlag. 221 p. https://doi.org/10.1007/978-3-540-92685-6
  • Osazuwa, I.B., Chii, E.C., 2009. A two-dimensional electrical resistivity imaging of an earth dam, Zaria, Nigeria. Journal of Environmental Hydrology 17 (28), 1–8.
  • Osazuwa, I.B., Chii, E.C., 2010. Two-dimensional electrical resistivitysurvey around the periphery of anartificial lake in Precambrian Basement Complex of Northern Nigeria. International Journal of Physical Sciences 5 (3), 238–245.
  • Osinowo, O.O., Akanji, A.O., Akinmosin, A., 2011. Integrated geophysical and geotechnical investigation of the failed portion of a road in Basement Complex terrain, Southwest Nigeria. Materials and Geoenvironment 58 (2), 143–162.
  • Rahaman, M.A.,1989. Review of the Basement Geology of South-Western Nigeria. In: Kogbe, C.A. (Ed.), Geology of Nigeria (2nd eds.). Rockview Nige Limited, Jos. pp. 39–56.
  • Robineau, B., Join, J.L., Beauvais, A., Parisot, J.C., Savin, C., 2007. Geoelectrical imaging of a thick regolith developed on ultramafic rocks: groundwater influence. Australian Journal of Earth Sciences 54 (5), 773–781. http://dx.doi.org/10.1080/08120090701305277
  • Silvester, P.P., Ferrari, R.L., 1996. Finite elements for electrical engineers (3rd ed.). Cambridge University Press. 514 p. http://doi.org/10.1071/CBO9781139170611
  • Storz, H., Storz, W., Jacobs, F., 2000. Electrical resistivity tomography to investigate geological structures of the Earth’s upper crust. Geophysical Prospecting 48 (3), 455–471.
  • Wisén, R., Christiansen, A., Dahlin, T., Auken, E., 2008. Experience from two resistivity inversion techniques applied in three cases of geotechnical site investigation. Journal of Geotechnical and Geoenvironmental Engineering 134, 1730–1742. https://doi.org/10.1061/ (ASCE)1090-0241(2008)134:12(1730)
  • Yassin, R.R., Muhammad, R.F., Taib, S.H., Al-Kouri, O., 2014. Application of ERT and Aerial Photographs Techniques to identify the Consequences of Sinkholes Hazards in Constructing Housing Complexes Sites over Karstic Carbonate Bedrock in Perak, Peninsular Malaysia. Journal of Geography and Geology 6 (3), 55–89.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77289654-bd54-4092-8d58-76cee7acf9dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.