PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of groundwater quality and their vulnerability to pollution using GQI and DRASTIC indices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface and groundwater resources are two important sources in meeting agricultural, urban, and industrial needs. Random supply of surface water resources has prevented these resources from being a reliable source of water supply at all times. Therefore, groundwater acts as insurance in case of water shortage, and maintaining the quality of these resources is very important. On the other hand, studying vulnerability and identifying areas prone to aquifer pollution seems necessary for the development and optimal management of these valuable resources. Identifying the vulnerabilities of the aquifer areas to pollution will lead to a greater focus on preserving those areas. Therefore, groundwater quality assessment was performed in this study using the groundwater quality index (GQI), and groundwater vulnerability to pollution was assessed using the DRASTIC index. GQI is developed based on the values of six quality parameters (Na+, Mg2+, Ca2+, SO42-, Cl-, and TDS). The DRASTIC index is developed based on the values of seven parameters (depth to the water table, net recharge, aquifer media, soil media, topography, impact of vadose zone, hydraulic conductivity). The zoning of both indexes has been done using geographic information system (GIS) software. The results show that the GQI of the region was about 93, and its DRASTIC index was about 86. Therefore, the quality of aquifer groundwater is excellent, and its vulnerability to pollution is low.
Wydawca
Rocznik
Tom
Strony
138--142
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Universitas Medan Area, Faculty of Agriculture, Medan, 20223, North Sumatera, Indonesia
autor
  • International Islamic University, Department of Electrical and Computer Engineering, Kuala Lumpur, Malaysia
  • Udayana University, Faculty of Engineering, Bali, Indonesia
  • Sawah University, College of Health and Medical Technology, Department of Medical Laboratory, Ministry of Higher Education and Scientific Research, Al-Muthanna, Samawa, Iraq
  • I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Propaedeutics of Dental Diseases, Russia
  • National Research Ogarev Mordovia State University, Republic of Mordovia, Saransk, Russia
  • Universitas Sumatera Utara, Faculty Economic and Business, Department of Doctoral Program, Medan, Indonesia
  • Saint Petersburg State University of Aerospace Instrumentation (SUAI), Institute of Fundamental Training and Technological Innovations, Russia
  • University of Mosul, College of Pharmacy, Department of Pharmaceutical Chemistry, Iraq
  • Bauman Moscow State Technical University, Department of Economics and Management, Russia
Bibliografia
  • AFSHAR A., KHOSRAVI M., MOLAJOU A. 2021. Assessing adaptability of cyclic and non-cyclic approach to conjunctive use of groundwater and surface water for sustainable management plans under climate change. Water Resources Management. No. 35(11) p. 3463–3479. DOI 10.1007/s11269-021-02887-3.
  • ARYA S., SUBRAMANI T., VENNILA G., ROY P.D. 2020. Groundwater vulnerability to pollution in the semi-arid Vattamalaikarai River Basin of south India thorough DRASTIC index evaluation. Geochemistry. Vol. 80(4), 125635. DOI 10.1016/j.chemer.2020.125635.
  • ASADI S.S., VUPPALA P., REDDY M.A. 2007. Remote sensing and GIS techniques for evaluation of groundwater quality in municipal corporation of Hyderabad (Zone-V), India. International Journal of Environmental Research and Public Health. Vol. 4(1) p. 45–52. DOI 10.3390/ijerph2007010008.
  • ASIF M.A. 2018. A theoretical study of the size effect of carbon nanotubes on the removal of water chemical contaminants. Journal of Research in Science, Engineering and Technology. Vol. 6(04) p. 21–27. DOI 10.24200/jrset.vol6iss04pp21-27.
  • BANDARA U.G.C., DIYABALANAGE S., HANKE C., VAN GELDERN R., BARTH J. A., CHANDRAJITH R. 2018. Arsenic-rich shallow groundwater In sandy aquifer systems buffered by rising carbonate waters: a geochemical case study from Mannar Island, Sri Lanka. Science of the Total Environment. Vol. 633 p. 1352–1359. DOI 10.1016/j.scitotenv.2018.03.226.
  • CHATTERJEE R., JAIN A.K., CHANDRA S., TOMAR V., PARCHURE P.K., AHMED S. 2018. Mapping and management of aquifers suffering from over-exploitation of groundwater resources in Baswa-Bandikui watershed, Rajasthan, India. Environmental Earth Sciences. Vol. 77(5), 157. DOI 10.1007/s12665-018-7257-1.
  • DEHBANDI R., ABBASNEJAD A., KARIMI Z., HERATH I., BUNDSCHUH J. 2019. Hydrogeochemical controls on arsenic mobility in an arid inland basin, Southeast of Iran: The role of alkaline conditions and salt water intrusion. Environmental Pollution. Vol. 249 p. 910–922. DOI 10.1016/j.envpol.2019.03.082.
  • ESHTAWI T., EVERS M., TISCHBEIN B. 2016. Quantifying the impact of urban area expansion on groundwater recharge and surface runoff. Hydrological Sciences Journal. Vol. 61(5) p. 826–843. DOI 10.1080/02626667.2014.1000916.
  • EZENWAJI E.E., EZENWEANI I.D. 2019. Spatial analysis of groundwater quality in Warri Urban, Nigeria. Sustainable Water Resources Management. Vol. 5(2) p. 873–882. DOI 10.1007/s40899-018-0264-2.
  • JHA M.K., SHEKHAR A., JENIFER M.A. 2020. Assessing groundwater quality for drinking water supply using hybrid fuzzy-GIS-based water quality index. Water Research. Vol. 179, 115867. DOI 10.1016/j.watres.2020.115867.
  • KHODABAKHSHI N., ASADOLLAHFARDI G., HEIDARZADEH N. 2015. Application of a GIS-based DRASTIC model and groundwater quality index method for evaluation of groundwater vulnerability: a case study, Sefid-Dasht. Water Science and Technology: Water Supply. Vol. 15(4) p. 784–792. DOI 10.2166/ws.2015.032.
  • KIVITS T., BROERS H.P., BEELTJE H., VAN VLIET M., GRIFFIOEN J. 2018. Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming. Environmental Pollution. Vol. 241 p. 988–998. DOI 10.1016/j.envpol.2018.05.085.
  • LI A., MU X., ZHAO X., XU J., KHAYATNEZHAD M., LALEHZARI R. 2021. Developing the non-dimensional framework for water distribution formulation to evaluate sprinkler irrigation. Irrigation and Drainage. DOI 10.1002/ird.2568.
  • MARGOT J., ROSSI L., BARRY D.A., HOLLIGER C. 2015. A review of the fate of micropollutants in wastewater treatment plants. Wiley Interdisciplinary Reviews: Water. Vol. 2(5) p. 457–487. DOI 10.1002/wat2.1090.
  • MOGES S.S., DINKA M.O. 2021. Assessment of groundwater vulnerability using the DRASTIC model: A case study of Quaternary catchment A21C, Limpopo River Basin, South Africa. Journal of Water and Land Development. DOI 10.24425/jwld.2021.137094.
  • NADERI M., RAEISI E. 2018. Management strategies of a critical aquifer under the climate change in Jahrum of South-Central Iran. Sustainable Water Resources Management. Vol. 4(4) p. 1077–1090. DOI 10.1007/s40899-018-0245-5.
  • NAS B., BERKTAY A. 2010. Groundwater quality mapping in Urban groundwater using GIS. Environmental Monitoring and Assessment. Vol. 160(1) p. 215–227. DOI 10.1007/s10661-008-0689-4.
  • NOROUZI H., MOGHADDAM A.A. 2020. Groundwater quality assessment using random forest method based on groundwater quality indices (case study: Miandoab plain aquifer, NW of Iran). Arabian Journal of Geosciences. Vol. 13(18), 912. DOI 10.1007/s12517-020-05904-8.
  • NZAMA S.M., KANYERERE T.O.B., MAPOMA H.W.T. 2021. Using groundwater quality index and concentration duration curves for classification and protection of groundwater resources: relevance of groundwater quality of reserve determination, South Africa. Sustainable Water Resources Management. Vol. 7(3), 31. DOI 10.1007/s40899-021-00503-1.
  • RAHMANY N.A., PATMAL M.H. 2021. Impact of solar heating technology installation on reduction of greenhouse gas emissions in Kabul city. International Journal of Innovative Research and Scientific Studies. Vol. 4(2) p. 53–61. DOI 10.53894/ijirss.v4i2.56.
  • REN J., KHAYATNEZHAD M. 2021. Evaluating the stormwater management model to improve urban water allocation system in drought conditions. Water Supply. Vol. 21(4) p. 1514–1524. DOI 10.2166/ws.2021.027.
  • SHAFIEE S.A. 2018. Investigating the study of green chemistry and its achievements in protecting the environment and preventing pollution. Journal of Research in Science, Engineering and Technology. Vol. 6(01) p. 36–40. DOI 10.24200/jrset.vol6iss01pp36-40.
  • SHEA A., VIOLIN C.R., WALLACE C., FORSTER B.M. 2019. Teaching water quality analysis using a constructed wetlands microcosm in a non-science majors environmental science laboratory. Pedagogical Research. Vol. 4(4), em0046. DOI 10.29333/pr/5945.
  • VALHONDO C., MARTÍNEZ-LANDA L., CARRERA J., DÍAZ-CRUZ S.M., AMALFITANO S., LEVANTESI C. 2020. Six artificial recharge pilot replicates to gain insight into water quality enhancement processes. Chemosphere. Vol. 240, 124826. DOI 10.1016/j.chemosphere.2019.124826.
  • XU Y.-P., OUYANG P., XING S.-M., QI L.-Y., KHAYATNEZHAD M., JAFARI , H. (2021). Optimal structure design of a PV/FC HRES using amended Water Strider Algorithm. Energy Reports. Vol. 7 p. 2057–2067. DOI 10.1016/j.egyr.2021.04.016.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-772583b2-8c54-4010-9716-5a8c8eca5bd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.