PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distributed sensor placement optimization for computer aided structural health monitoring

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An optimal sensor placement methodology is implemented and herein proposed for SHM model-assisted design and analysis purposes. The kernel of this approach analysis is a genetic-based algorithm providing the sensor network layout by optimizing the probability of detection (PoD) function while, in this preliminary phase, a classic strain energy approach is adopted as well established damage detection criteria. The layout of the sensor network is assessed with respect to its own capability of detection, parameterized through the PoD. A distributed fiber optic strain sensor is adopted in order to get dense information of the structural strain field. The overall methodology includes an original user-friendly graphical interface (GUI) that reduces the time-to-design costs needs. The proposed methodology is preliminarily validated for isotropic and anisotropic elements.
Rocznik
Strony
111--127
Opis fizyczny
Bibliogr. 18 poz., fot., rys.
Twórcy
  • Centro Italiano Ricerche Aerospaziali, CIRA, Capua, Italy
  • Centro Italiano Ricerche Aerospaziali, CIRA, Capua, Italy
  • Centro Italiano Ricerche Aerospaziali, CIRA, Capua, Italy
  • Centro Italiano Ricerche Aerospaziali, CIRA, Capua, Italy
  • Universitá degli Studi di Napoli ‘Federico II’, Napoli, Italy
  • Universitá degli Studi di Napoli ‘Federico II’, Napoli, Italy
Bibliografia
  • [1] C. Boller, F.K. Chang, and Y. Fujino. Encyclopedia of Structural Health Monitoring. John Wiley & Sons Ltd., Chichester, UK, 2009.
  • [2] M.I. Friswell. Damage identification using inverse methods. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851):393–410, 2007. doi: 10.1098/rsta.2006.1930.
  • [3] S. Zhou, Y. Bao, and H. Li. Optimal sensor placement based on substructure sensitivity. In Proceedings of SPIE, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, volume 8345, 2012. doi: 10.1117/12.915074.
  • [4] D.C. Kammer and M.L. Tinker. Optimal placement of triaxial accelerometers for modal vibration tests. Mechanical Systems and Signal Processing, 18(1):29–41, 2004. doi: 10.1016/S0888-3270(03)00017-7.
  • [5] M. Najeeb and V. Gupta. Energy efficient sensor placement for monitoring structural health. International Electronic Conference on Sensors and Applications, 1–16 June 2014. doi: 10.3390/ecsa-1-d008.
  • [6] W. Liu, W.C. Gao, Y. Sun, and M.J. Xu. Optimal sensor placement for spatial lattice structure based on genetic algorithms. Journal of Sound and Vibration 317(1–2):175–189, 2008. doi: 10.1016/j.jsv.2008.03.026.
  • [7] H. Gao and J.L. Rose. Sensor placement optimization in structural health monitoring using genetic and evolutionary algorithms. Proceedings of SPIE, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, volume 6174, 2006. doi: 10.1117/12.657889.
  • [8] X. Bao and L. Chen. Recent progress in Brillouin scattering based fiber sensors. Sensors, 11(4):4152–4187, 2011. doi: 10.3390/s110404152.
  • [9] L. Maurin, P. Ferdinand, F. Nony, and S. Villalonga. OFDR distributed strain measurements for SHM of hydrostatic stressed structures: an application to high pressure hydrogen storage type IV composite vessels – H2E Project. 7th European Workshop on Structural Health Monitoring, pages 930–937, Nantes, France, 8–11 July, 2014.
  • [10] O. Shapira, U. Ben-Simon, A. Bergman, S. Shoham, B. Glam, I. Kressel, T. Yehoshula, and M. Tur. Structural health monitoring of a UAV fleet using fiber optic distributed strain sensing. International Workshop on Structural Health Monitoring, Stanford, CA, USA, 1–3 September, 2015. doi: 10.12783/SHM2015/371.
  • [11] J. Li, R.K. Kapania, and W. B. Spillman. Placement optimization of distributed-sensing fiber optic sensors using genetic algorithms, AIAA Journal, 46(4):824–836, 2008. doi: 10.2514/1.25090.
  • [12] H. Li, H. Yang, and S.-L.J, Hu. Modal strain energy decomposition method for damage localization in 3D frame structures. Journal of Engineering Mechanics, 132(9):41–951, 2006. doi: 10.1061/(ASCE)0733-9399(2006)132:9(941).
  • [13] H.-W. Hu and C.-B. Wu. Non-destructive damage detection of two dimensional plate structures using modal strain energy method. Journal of Mechanics, 24(4):319–332, 2008. doi: 10.1017/S1727719100002458.
  • [14] Z.Y. Shi, S.S. Law, and L.M. Zhang. Improved damage quantification from elemental modal strain energy change. Journal of Engineering Mechanics, 128(5):521–529, 2002. doi: 10.1061/(ASCE)0733-9399(2002)128:5(521).
  • [15] M. Ciminello, A. Concilio, B. Galasso, and F.M. Pisano. Skin-stringer debonding detection using distributed dispersion index features. Structural Health Monitoring, 17(5):1245–1254, 2018. doi: 10.1177/1475921718758980.
  • [16] P.O. Mensah-Bonsu. Computer-aided Engineering Tools for Structural Health Monitoring under Operational Conditions. Master’s Thesis, University of Connecticut, USA, 2012. doi: https://digitalcommons.uconn.edu/gs_theses/278.
  • [17] R. Mason, L.A. Ginter, M. Singleton, V.F. Hock, R.G Lampo, and S.C. Sweeney. A novel integrated monitoring system for structural health management of military infrastructure, Proceedings of Department of Defense Corrosion Conference, 2009.
  • [18] S. Beskhyroun. Graphical interface toolbox for modal analysis. Proceedings of the Ninth Pacific Conference on Earthquake Engineering: Building an Earthquake-Resilient Society, Auckland New Zealand, 14–16 April 2011.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7724c84c-9b90-40d3-8351-759e2b62a647
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.