PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oil agglomeration of metal-bearing shale in the presence of mixed cationic-anionic surfactants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reports oil agglomeration of fine metal-bearing shale particles in the presence of cationic (dodecylamine hydrochloride) and anionic (sodium dodecyl sulfate) surfactants and their mixture. The experimental results demonstrated that there was a strong relationship between zeta potential, hydrophobic coagulation, oil agglomeration and particle hydrophobicity in the presence of cationic surfactant, whereas shale neither coagulated nor agglomerated in the presence of anionic surfactant. Addition of either anionic or cationic surfactant in emulsification of a bridging oil increased the size of agglomerates and reduced the concentration of surfactant used in the suspension. The results pointed to synergism between cationic and anionic surfactants in oil agglomeration. Based on the results obtained from this study, the mechanism of oil agglomeration of shale in the presence of ionic surfactants and their mixture was elucidated.
Rocznik
Strony
1052--1059
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Wroclaw University of Science and Technology
  • Wroclaw University of Science and Technology
  • NTNU Norwegian University of Science and Technology
Bibliografia
  • BASTRZYK, A., POLOWCZYK, I., SADOWSKI, Z., SIKORA, A., 2011. Relationship between properties of oil/water emulsion and agglomeration of carbonate minerals. Sep. Purif. Technol. 77, 325-330.
  • CEBECI, Y. SÖNMEZ, I., 2004. A study on the relationship between critical surface tension of wetting and oil agglomeration recovery of calcite. J. Colloid Interface Sci. 273, 300-305.
  • ÇELIK, M.S., OZDEMIR, O., 2018. Heterocoagulation of hydrophobized particulates by ionic surfactants. Physicochem. Probl. Miner. Process., 54(1), 124–130.
  • DRZYMALA, J., MARKUSZEWSKI, R., WHEELOCK, T.D., 1986. Influence of air on oil agglomeration of carbonaceous solids in aqueous suspension. Int. J. Miner. Process. 18, 277-286.
  • DRZYMALA, J., 2007. Mineral processing. Foundations of theory and practice of minerallurgy. Ofic. Wyd. PWr, Wroclaw, Poland.
  • DUZYOL, S., OZKAN A., 2010. Role of hydrophobicity and surface tension on shear flocculation and oil agglomeration of magnesite. Sep. Purif. Technol.72, 7-12.
  • GAO, Z., SUN, W., HU, Y., 2015. New insights into the dodecylamine adsorption on scheelite and calcite: An adsorption model. Miner. Eng. 79, 54-61.
  • HUANG, A.Y., BERG, J.C., 2003. Gelation of liquid bridges in spherical agglomeration. Colloids Surf. A. 215, 241-252.
  • KUME, G., GALLOTTI, M., NUNES, G., 2008. Review on anionic/cationic surfactant mixtures. J. Surfact. Deterg. 11, 111.
  • LASKOWSKI, J.S, 1992. Oil assisted fine particle processing. In: Colloid Chemistry in Mineral Processing, Laskowski, J.S., Ralston, J. (eds.), Elsevier, New York, 361-394.
  • LASKOWSKI, J.S., 2001. Coal flotation and fine coal utilization. In: Developments in Mineral Processing, vol. 14, Elsevier, Amsterdam.
  • LASKOWSKI, J.S., 2013. From amine molecules adsorption to amine precipitation transfer by bubbles. Miner. Eng. 45, 170179.
  • MEHROTRA, V.P., SASTRY, K.V.S. AND MOREY, B.W., 1983. Review of oil agglomeration techniques for processing of fine coals. Int. J. Miner. Process. 11, 175-201.
  • OZKAN, A., AYDOGAN, S., YEKELER, M., 2005. Critical surface tension for oil agglomeration. Int. J. Miner. Process. 76, 83-91.
  • ÖZER, M., BASHA, O.M., MORSI, B., 2017. Coal-agglomeration processes: A review. Int. J. Coal. Prep. Util. 37(3), 131167.
  • PIESTRZYŃSKI, A., PIECZONKA, J., 2012. Low temperature ore minerals associations in the Kupferschiefer type deposit, Lubin-Sieroszowice Mining District SW Poland. Mineral. Rev. 62, 59-66.
  • POLOWCZYK, I., BASTRZYK, A., KOŹLECKI, T., SADOWSKI Z., 2015. Stability of three-phase water-particle-oil systems. Chem. Eng. Technol. 38 (4), 715-720.
  • POLOWCZYK, I., BASTRZYK, A., KOŹLECKI, T., SADOWSKI, Z., 2014. Characterization of glass beads surface modified with ionic surfactants. Sep. Sci. Technol. 49 (11), 1768-1774.
  • RAHFELD, A., KLEEBERG, R., MÖCKEL, R., GUTZMER, J., 2018. Quantitative mineralogical analysis of European Kupferschiefer ore. Miner. Eng. 115, 21-32.
  • ROSEN, M. J., HUA X.Y., 1982. Synergism in binary mixtures of surfactants: II. Some experimental data. J. Am. Oil Chem. Soc. 59(12), 582-585.
  • WANG, X., MILLER, J.D., 2018. Dodecyl amine adsorption at different interfaces during bubble attachment/detachment at a silica surface. Physicochem. Probl. Miner. Process. 54(2), 81-88.
  • WIŚNIEWSKA, M., TERPIŁOWSKI, K., CHIBOWSKI, S., URBAN, T., ZARKO, V.I., GUN’KO, C., 2013. Effect of polyacrylic acid (PAA) adsorption on stability of mixed alumina - silica oxide suspension. Powder Technol. 233, 190200.
  • XIAO, J.X., ZHANG, Y., WANG, C., ZHANG, J., WANG, C.M., BAO, Y.X., ZHAO, Z.G., 2005. Adsorption of cationicanionic surfactant mixtures on activated carbon. Carbon 43, 1032-1038.
  • YU, Z.J., ZHAO., G.X., 1989. The physicochemical properties of aqueous mixtures of cationic-anionic surfactants. J. Colloid Interface Sci. 130(2), 421-428.
  • VAN NETTEN, K., MORENO-ATANASIO, R., GALVIN, K.P., 2016. Selective agglomeration of fine coal using a waterin-oil emulsion. Chem. Eng. Res. Des. 110, 54-61.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7722c6f3-f9fa-45fe-84bf-d62bf03476ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.