PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of surface metrology artifacts for polymer-based additive manufacturing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Test artifacts, resembling real machine parts, allow quantitative evaluation of system performance and insight into individual errors, aiding in improvement and standardization in additive manufacturing. The article provides a comprehensive overview of existing test artifacts, categorized based on geometric features and material used. Various measurement techniques such as stylus profilometry and computed tomography are employed to assess these artifacts. Specific artifact categories include slits, angular or linear features, variable surfaces, and others, each accompanied by examples from research literature, highlighting diverse artifact designs and their intended applications. The paper underscores the importance of user-friendly and unambiguous artifacts for dimensional control, particularly in surface metrology. It anticipates the continued growth of metrological verification in future manufacturing environments, emphasizing the need for precise and reliable measurement results to support decision-making in production conditions.
Rocznik
Tom
Strony
art. no. 5
Opis fizyczny
Bibliogr. 40 poz.
Bibliografia
  • [1] Q. Yan, H. Dong, J. Su, J. Han, B. Song, Q. Wei, Y. Shi, A Review of 3D Printing Technology for Medical Applications. Engineering 4 (2018) pp. 729–742 https://doi.org/10.1016/j.eng.2018.07.021.
  • [2] C. Groth, N.D. Kravitz, P. E. Jones, J. W. Graham, W. R. Redmond, Three-Dimensional Printing Technology. Journal of Clinical Orthodontics 8 (2014) pp. 475-485.
  • [3] J. Huang, J. Huang,J. Wang, A Review of Stereolithography: Processes and Systems. Processes 8 (2020) https://doi.org/10.3390/pr8091138.
  • [4] D. T. Pham, S. Dimov, F. Lacan, Selective laser sintering: Applications and technological capabilities. Journal of Engineering Manufacture 5 (1999) https://doi.org/10.1243/0954405991516912.
  • [5] F. Sillani, R. G. Kleijnen, M. Vetterli, M. Schmid, K.Wegener, Selective laser sintering and multi jet fusion: Process-induced modification of the raw materials and analyses of parts performance. Additive Manufacturing, 27 (2019) https://doi.org/10.1016/j.addma.2019.02.004.
  • [6] ASTM Standard F2792, 2012a, Standard Terminology for Additive Manufacturing Technologies. West Conshohocken, PA, ASTM International (2012). DOI: 10.1520/F2792-12.
  • [7] M. Faes, W. Abbeloos, F. Vogeler, H. Valkenaers, K. Coppens, T. Goedemé, E. Ferraris, Process Monitoring of Extrusion Based 3D Printing via Laser Scanning. Conference Proceedings PMI 6 (2014) pp. 363-367 https://doi.org/10.48550/arXiv.1612.02219.
  • [8] T. Li, J. Li, X. Ding, X. Sun, T. Wu, An error identification and compensation method for Cartesian 3D printer based on specially designed test artifact. The International Journal of Advanced Manufacturing Technology 125 (2023) pp. 4185–4199.
  • [9] E. George, P. Liacouras, F. J. Rybicki, D. Mitsouras, Measuring and Establishing the Accuracy and Reproducibility of 3D Printed Medical Models. RadioGrafika (2017) https://doi.org/10.1148/rg.2017160165.
  • [10] J. Kwon, N. Kim, J.Ma, Environmental sustainability evaluation of additive manufacturing using the NIST test artifact, ournal of Mechanical Science and Technology 34 (2020) pp. 1265–1274.
  • [11] S. Moylan, J. Slotwinski, A. Cooke, K. Jurrens, M. A. Donmez, Proposal for a standardized test artifact for additive Manufacturing machines and processes. National Institute of Standards and Technology (2012), pp. 902 – 920.
  • [12] M. B. Bauza, S. P. Moylan , R. M. Panas, S. C. Burke, H. E. Martz, J.S. Taylor, J.D. Smokovitz, Study of accuracy of parts produced using additive manufacturing. ASPE Spring Topical (2014) 86–91.
  • [13] A. Thompson, I. Maskery, R. K. Leach, X-ray computed tomography for additive manufacturing: a review. Meas. Sci. Technol. 27 (2016), http://dx.doi.org/10.1088/0957-0233/27/7/072001.
  • [14] L. Rebaioli, I. Fassi, A review on benchmark artifacts for evaluating the geometrical performance of additive manufacturing processes. Int J Adv Manuf Technol. (2017) doi 10.1007/s00170-017-0570-0.
  • [15] P. Shah, R. Racasan, P. Bills, Comparison of different additive manufacturing methods using computed tomography. Case Studies in Nondestructive Testing and Evaluation 6 (2016) pp. 69–78, http://dx.doi.org/10.1016/j.csndt.2016.05.008.
  • [16] T. Toguem, B. S. Rupal, C. Mehdi-Souzani, A. J. Qureshi, N. Anwer, A review of am artifact design methods. Conference: euspen ASPE Summer Tropical Meeting on Advancing Precision in Additive Manufacturing (2018).
  • [17] A. Townsend, R. Racasan, L. Blunt, Surface-specific additive manufacturing test artefacts. Surf. Topogr.: Metrol. Prop. 6 (2018) https://doi.org/10.1088/2051-672X/aabcaf.
  • [18] B. Singh Rupal, R. Ahmad, A. J. Qureshi, Feature-Based Methodology for Design of Geometric Benchmark Test Artifacts for Additive Manufacturing Processes. 28th CIRP Design Conference (2018) pp. 84–89 10.1016/j.procir.2018.02.012.
  • [19] M. de Pastre, S. Tagne, N. Anwer, Test artefacts for additive manufacturing: A design methodology review. CIRP Journal of Manufacturing Science and Technology 31 (2020) pp. 14–24 https://doi.org/10.1016/j.cirpj.2020.09.008.
  • [20] P. Minetola, F. Calignano, M. Galati, Comparing geometric tolerance capabilities of additive manufacturing systems for polymers. Additive Manufacturing 32 (2020) ht tps://doi.org /10.1016/j.addma.2020.101103.
  • [21] L. Gallant, A. Hsiao, G. McSorley, Design of a benchmark test artifact to investigate 316L stainless steel print quality and properties. Proceedings of the Canadian Society for Mechanical Engineering International Congress 2020 (2020).
  • [22] V. Santos, A. Thompson, D. S. Waterhouse, I. Maskery, P. Woolliams,R. Leach, Design and characterisation of an additive manufacturing benchmarking artefact following a design-for-metrology approach. Additive Manufacturing 32 (2020) https://doi.org/10.1016/j.addma.2019.100964.
  • [23] N. Vorkapic, M. Pjevic, M. Popovic, N. Slavkovic, S. Zivanovic, An additive manufacturing benchmark artifact and deviation measurement method, Journal of Mechanical Science and Technology 34 (2020) 10.1007/s12206-020-0633-2.
  • [24] G. Budzik, J. Woźniak, A. Paszkiewicz, Ł. Przeszłowski, T. Dziubek, M. Dębski, Methodology for the Quality Control Process of Additive Manufacturing Products Made of Polymer Materials, Materials 14 (2021) https://doi.org/10.3390/ma14092202.
  • [25] L. Spitaels, E. Rivière-Lorphèvre, A. Demarbaix, F. Ducobu, Development of a novel benchmark artifact for Additive Manufacturing processes. Euspen’s 21st International Conference & Exhibition (2021).
  • [26] R. Kawalkar, H. K. Dubey, S. P. Lokhande, A review for advancements in standardization for additive manufacturing. Materials Today: Proceedings 50 (2022) pp. 1983–1990 https://doi.org/10.1016/j.matpr.2021.09.333.
  • [27] J. Richter, P. Jacobs (1992) Accuracy. in Jacobs P, (Ed.) Rapid Prototyping & Manufacturing, Society of Manufacturing Engineers, pp. 287–315.
  • [28] B. Hao, E. Korkmaz, B. Bediz, O.B. Ozdoganlar, A Novel Test Artifact for Performance valuation of Additive Manufacturing Processes. Using Additive Manufacturing, ASPE Spring Topical (2014), Berkeley, USA.
  • [29] J.P. Kruth, M. Leu, T. Nakagawa, Progress in Additive Manufacturing and Rapid Prototyping. CIRP Annals 47 (1998) 525–540.
  • [30] D. Scaravetti, P. Dubois, R. Duchamp, Qualification of Rapid Prototyping Tools: Proposition of a Procedure and a Test Part. The International Journal of Advanced Manufacturing Technology 38 (2008) 683–690.
  • [31] S. Moylan, J. Slotwinski, A. Cooke, K. Jurrens, M.A. Donmez, An Additive Manufacturing Test Artifact, Journal of Research of the National Institute of Standards and Technology. 119 (2014) 429. https://doi.org/10.6028/jres.119.017.
  • [32] M. Fahad, N. Hopkinson, A new benchmarking part for evaluating the accuracy and repeatability of Additive Manufacturing ( AM ) processes, 2nd International Conference on Mechanical, Production and Automobile Engineering. (2012).
  • [33] J.P. Kruth, Material Incress Manufacturing by Rapid Prototyping Techniques, CIRP Annals. 40 (1991) 603–614 .https://doi.org/10.1016/s0007-8506(07)61136-6.
  • [34] R. Ippolito, L. Iuliano, A. Gatto, Benchmarking of Rapid Prototyping Techniques in Terms of Dimensional Accuracy and Surface Finish, CIRP Annals. 44 (1995) 157–160. https://doi.org/10.1016/s0007-8506(07)62296-3.
  • [35] M. Mahesh, Y.S. Wong, J.Y.H. Fuh, H.T. Loh, Benchmarking for comparative evaluation of RP systems and processes, Rapid Prototyping Journal. 10 (2004) 123–135. https://doi.org/10.1108/13552540410526999.
  • [36] G.D. Kim, Y.T. Oh, A benchmark study on rapid prototyping processes and machines: Quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 222 (2008) 201–215 https://doi.org/10.1243/09544054jem724.
  • [37] S. Moylan, Progress toward standardized additive manufacturing test artifacts. Proceedings – ASPE 2015 Spring Topical Meeting: Achieving Precision Tolerances in Additive Manufacturing. (2015)100-105.
  • [38] T. Grimm, G. Wiora, G. Witt, Characterization of typical surface effects in additive manufacturing with confocal microscopy, Surface Topography: Metrology and Properties. 3 (2015) 014001. https://doi.org/10.1088/2051-672x/3/1/014001.
  • [39] A. Jansson, L. Pejryd, Characterisation of carbon fibre-reinforced polyamide manufactured by selective laser sintering, Additive Manufacturing. 9 (2016) 7–13. https://doi.org/10.1016/j.addma.2015.12.003.
  • [40] J.P. Kruth, B. Vandenbroucke, J. Van Vaerenbergh, P. Mercelis, Benchmarking of different SLS/SLM processes as rapid manufacturing techniques, Int. Conf. Polymers & Moulds Innovations (PMI). (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-772246e8-3541-4be1-984b-bccc6fcc777f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.