PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal degradation process of semi-synthetic fuels for gas turbine engines in non-aeronautical applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article concerns the issue of thermal degradation process of fuels, important from the perspective of the operation of turbine engines, especially in the context of new fuels/bio-fuels and their implementation. The studies of the kerosenebased jet fuel (Jet A-1) and its blends with synthetic components manufactured according to HEFA and ATJ technology, were presented. Both technologies are currently approved by ASTM D7566 to produce components to be added to turbine fuels. Test rig investigations were carried out according to specific methodology which reflects the phenomena taking place in fuel systems of turbine engines. The mechanism of thermal degradation process was assessed on the basis of test results for selected properties, IR spectroscopy and calculation of activation energy. The results show that with the increase of the applied temperature there is an increment of the content of solid contaminants, water and acid for all tested fuels. Thermal degradation process is different for conventional jet fuel when compared to blends, but also semi-synthetic fuels distinguished by different thermal stability depending on a given manufacturing technology.
Rocznik
Tom
Strony
65--71
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Air Force Institute of Technology Księcia Bolesława 6 01-494 Warsaw Poland
  • Air Force Institute of Technology Księcia Bolesława 6 01-494 Warsaw Poland
  • Air Force Institute of Technology Księcia Bolesława 6 01-494 Warsaw Poland
  • Air Force Institute of Technology Księcia Bolesława 6 01-494 Warsaw Poland
  • Air Force Institute of Technology Księcia Bolesława 6 01-494 Warsaw Poland
  • Air Force Institute of Technology Księcia Bolesława 6 01-494 Warsaw Poland
  • Air Force Institute of Technology Księcia Bolesława 6 01-494 Warsaw Poland
Bibliografia
  • 1. Pawlak M., Kuźniar M.: Determination of emission of noxious compounds in exhaust gas from naval gas turbine on the basis of emission characteristics of aircraft engine (in Polish), Autobusy, No.12, pp. 345-350, 2017.
  • 2. GE, Building on a Marine Power Legacy, 2017.
  • 3. NATO Logistics Handbook, NATO Headquarters, Brussels, 2012.
  • 4. Giannini R.M., Martin C.J., Strucko R.: Single naval fuel at sea feasibility study – phase one. Naval Air Systems Command Fuels and Lubricants Division, NAVAIRSYSCOM Report 445/02-004, 2002.
  • 5. Cengiz D., Burak Z.: Environmental and Economical Assessment of Alternative Marine Fuels, Journal of Cleaner Production Vol. 113, No. 02, pp. 438-449, 2016.
  • 6. ASTM D7566 Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons, 2018.
  • 7. ASTM D 4054 Standard Practice for Evaluation of New Aviation Turbine Fuels and Fuel Additives, 2017.
  • 8. Gawron B., T. Białecki T.: Impact of a Jet A-1/HEFA blend on the performance and emission characteristics of a miniature turbojet engine, International Journal of Environmental Science and Technology, Vol. 15, No. 7, pp. 1501-1508, 2018.
  • 9. El Gohary M., Ammar N.R.: Thermodynamic Analysis of Alternative Marine Fuels for Marine Gas Turbine Power Plants, J. Marine Sci. Appl. Vol. 15, No. 1, pp. 95-103, 2016.
  • 10. Chiong M. C., Chong C. T., Ng J.-H., Lam S. S., Tran M.-V., Chong W.W.F, Mohd Jaafar M.N., Valera-Medina A.,: Liquid biofuels production and emissions performance in gas turbines: A review, Energy Conversion and Management, Vol. 173, pp. 640-658, 2018.
  • 11. Kołwzan K., Narewski M.: Study on alternative fuels for marine applications. Latvian Journal of Chemistry, Vol. 51, No. 4, pp. 398-406, 2012.
  • 12. Hashimoto N., Nishida H., Ozawa Y.: Fundamental combustion characteristics of Jatropha oil as alternative fuel for gas turbines, Fuel, Vol. 126, pp. 194-201, 2014.
  • 13. Seljak T., Sirok B., Katrasnik T.: Advanced fuels for gas turbines: Fuel system corrosion, hot path deposit formation and emissions, Energy Conversion and Management, Vol. 125, pp. 40-50, 2016.
  • 14. Spychała J., Kułaszka A., Giewoń J.: Report No. 1/ AŁ-21F3/34/2011.
  • 15. ASTM D 3241 Standard Test Method for Thermal Oxidation Stability of Aviation Turbine Fuels, 2018.
  • 16. Sarnecki J., Gawron B.: A method of assessing the tendency of aviation fuels to generate thermal degradation products under the influence of high temperatures, Journal of KONES, Vol. 24, No. 4, pp. 377-384, 2017.
  • 17. Altin O., Eser S.: Carbon deposit formation from thermal stressing of petroleum fuels; Am. Chem. Soc., Div. Fuel Chem., Vol. 49, No. 2, pp. 764-766, 2004.
  • 18. Carlisle H. W., Frew R. W., Mills J. R., Aradi A. A., Avery N. L.: The effect of fuel composition and additive content on injector deposits and performance of an air-assisted direct injection spark ignition (DISI) research engine. SAE paper, No. 2001-01-2030, 2001.
  • 19. Osgood E., Mansker K.: Performance Enhancing Diesel Additives, Fuel Marketer News Magazine, pp. 24-26, 2014.
  • 20. Stępień Z. - Intake valve and combustion chamber deposits formation – the engine and fuel related factors that impact their growth; NAFTA-GAZ, No. 4, pp. 236-242, 2014.
  • 21. Pedley J. F., Hiley R. W., Solly R. K.: Storage stability of petroleum-derived diesel fuel: 4. Synthesis of sediment precursor compounds and simulation of sediment formation using model systems; Fuel, Vol. 68, No. 1, pp. 27-31, 1989.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-771bf61b-65fe-4c2a-bfba-0988d186028b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.