PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie ozonu w produkcji bezpiecznej żywności

Identyfikatory
Warianty tytułu
EN
The use of ozone in the production of safe food
Języki publikacji
PL
Abstrakty
PL
Ozon (O3) to gaz naturalnie występujący w przyrodzie, który powstaje w stratosferze na wysokości ok. 30 km w wyniku działania promieni ultrafioletowych na tlen. Do wytworzenia ozonu potrzebna jest duża energia, która rozbija tlen cząsteczkowy (O2) na dwa wolne rodniki tlenowe (O-), szybko reagujące z dostępnym tlenem, tworząc O3. Do przemysłowego wytwarzania ozonu w sektorze spożywczym wykorzystuje się wyładowania koronowe i dielektryczne barierowe. W przemyśle spożywczym ozon znajduje zastosowanie w dezynfekcji:linii produkcyjnych, opakowań przed ich napełnianiem, utrwalaniu żywności, uzdatnianiu wody do butelkowania i picia oraz oczyszczaniu ścieków. Oporność mikroorganizmów na antybiotyki powinna zachęcić producentów do zainteresowania się tym środkiem dezynfekującym. Innym możliwym zastosowaniem ozonu jest dezaktywacja pozostałości pestycydów i mykotoksyn w żywności. Ozon, jak wszystkie substancje chemiczne, ma zalety i wady, a jego stosowanie wymaga właściwego doboru parametrów procesu i zbadania ich wpływu na jakość poszczególnych produktów żywnościowych. Ozonowanie to ekologiczna technika utrwalania żywności, a ponadto jest to proces ekonomiczny.
EN
Ozone (O3) is a gas naturally occurring in nature, which is formed in the stratosphere at a height of about 30 km as a result of the action of ultraviolet rays on oxygen. A large energy is needed to produce ozone, which breaks down molecular oxygen (O2) into two free oxygen radicals (O-), quickly reacting with available oxygen to form O3. For industrial production of ozone, corona and dielectric discharges are used. In the food industry, ozone is used for production lines and containers before filling disinfection, food preservation, water treatment for bottling and drinking, and wastewater treatment. The resistance of microorganisms to antibiotics should encourage manufacturers to be interested in this disinfectant. Another possible application of ozone is neutralization of pesticide residues and mycotoxins in food. Ozone, like all chemical substances, has advantages and disadvantages, and its use requires proper selection of process parameters and examination of their impact on the quality of individual food products. Ozonation is an ecological technique for preserving food, and it is also an economic process.
Słowa kluczowe
Rocznik
Strony
16--20
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
  • Wydział Nauk o Żywieniu Człowieka i Konsumpcji, SGGW, Warszawa
  • Biopasz, Gdańsk
Bibliografia
  • [1] Aday Mehmet Seckin, Cengiz Caner. 2014. „Individual and combined effects of ultrasound,ozone and chlorine dioxide on strawberry storage life”. LWT – Food Science and Technology 57 (1) : 344-51.
  • [2] Alexopoulos A., S. Plessas, S. Ceciu, V. Lazar, I. Mantzourani, C. Voidarou, E. Stavropoulou, E. Bezirtzoglou. 2013. „Evaluation of ozone efficacy on the reduction of microbial population of fresh cut lettuce (Lactuca sativa) and green bell pepper (Capsicum annuum)”. Food Control 30 (2) : 491-96.
  • [3] Asgar Ali, Mei Kying Ong, Charles F. Forney. 2014. „Effect of ozone pre-conditioning on quality and antioxidant capacity of papaya fruit during ambient storage”. Food Chemistry 142 : 19-26.
  • [4] Cravero Francesco, Vasileios Englezos, Kalliopi Rantsiou, Fabrizio Torchio, Simone Giacosa, Susana Rio Segade, Vincenzo Gerbi, Luca Rolle, Luca Cocolin. 2016. „Ozone treatments of post harvested wine grapes: Impact on fermentative yeasts and wine chemical properties”. Food Research International 87 : 134-41.
  • [5] Dev Kumar Govindaraj, Robert C. Williams, Susan S. Sumner, Joseph D. Eifert. 2016. „Effect of ozone and ultraviolet light on Listeria monocytogenes populations in fresh and spent chill brines”. Food Control 59 : 172-77.
  • [6] Feliziani Erica, Gianfranco Romanazzi, Joseph L. Smilanick. 2014. „Application of low concentrations of ozone during the cold storage of table grapes”. Postharvest Biology and Technology 93 : 38-48.
  • [7] Gabler Franka Mlikota, Joseph L. Smilanick, Monir F. Mansour, Hakan Karaca. 2010. „Influence of fumigation with high concentrations of ozone gas on postharvest gray mold and fungicide residues on table grapes”. Postharvest Biology and Technology 55 (2) : 85-90.
  • [8] Garg Ramandeep, Daniela Abela, Brijesh Tiwari, Vasilis Valdramidis. 2016. „Potential industrial applications of decontamination technologies for fresh produce”. W Food Hygiene and Toxicology in Ready-to-Eat Foods, zredagowane przez Parthena Kotzekidou, 313-36. San Diego: Academic Press.
  • [9] Gil Maria I., Maria V. Selma, Francisco Lopez-Galvez, Ana Allende. 2009. „Fresh-cut product sanitation and wash water disinfection: problems and solutions”. International Journal of Food Microbiology 134 (1-2) : 37-45.
  • [10] Glowacz Marcin, Richard Colgan, Deborah Rees. 2015. „The use of ozone to extend the shelf-life and maintain quality of fresh produce”. Journal of the Science of Food and Agriculture 95 (4) : 662-71.
  • [11] Karaca Hakan, Y. Sedat Velioglu. 2014. „Effects of ozone treatments on microbial quality and some chemical properties of lettuce, spinach, and parsley”. Postharvest Biology and Technology 88 : 46-53.
  • [12] Luo Xiaohu, Ren Wang, Li Wang, Yongfu Li, Yuanyuan Bian, Zhengxing Chen. 2014. „Effect of ozone [8] Garg Ramandeep, Daniela Abela, Brijesh Tiwari, Vasilis Valdramidis. 2016. „Potential industrial applications of decontamination technologies for fresh produce”. W Food Hygiene and Toxicology in Ready-to-Eat Foods, zredagowane przez Parthena Kotzekidou, 313-36. San Diego: Academic Press.
  • [13] Miller Fatima A., Teresa R.S. Brandao, Cristina L.M. Silva 2015. „Ozone Processing”. W Conventional and Advanced Food Processing Technologies, (red.) Suvendu Bhattacharya, 617-44. Wiley Online Books. John Wiley & Sons, Ltd.
  • [14] „Multi-country outbreak of Listeria monocytogenes serogroup IVb, multi-locus sequence type 6, infections probably linked to frozen corn”. 2018. European Food Safety Authority, European Food Safety Authority European Centre for Disease Prevention and Control. EFSA Supporting Publications 15 (3): 1402E. https://doi.org/10.2903/sp.efsa. 2018.EN-1402.
  • [15] O’Donnell Colm, B.K. Tiwari, P. J. Cullen, Rip G. Rice, red. 2012. Ozone in food processing. Oxford: Blackwell Publishing Ltd.
  • [16] O’Donnell Colm, B.K. Tiwari, P. J. Cullen, Rip G. Rice. 2012. „Status and trends of ozone in food processing”. W Ozone in Food Processing, 1–17. Wiley Online Books. Oxford: Blackwell Publishing Ltd.
  • [17] Okpala Charles, R. Odilichukwu. 2014. „Investigation of quality attributes of ice-stored Pacific white shrimp (Litopenaeus vannamei) as affected by sequential minimal ozone treatment”. LWT - Food Science and Technology 57 (2) : 538-47.
  • [18] Pang Yu-Hsin, Yen-Con Hung. 2016. „Efficacy of slightly acidic electrolyzed water and uv-ozonated water combination for inactivating Escherichia coli O157:H7 on romaine and iceberg lettuce during spray washing process”. Journal of Food Science 81 (7) : M1743-48.
  • [19] Pascari Xenia, Antonio J. Ramos, Sonia Marin, Vicente Sanchis. 2018. „Mycotoxins and beer. Impact of beer production process on mycotoxin contamination. A review”. Food Research International 103 : 121-29.
  • [20] Pascual A., I. Llorca, A. Canut. 2007. „Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities”. Trends in Food Science & Technology 18 : S29-35.
  • [21] „Rozporządzenie (WE) nr 852/2004 Parlamentu Europejskiego i Rady z dnia 29 kwietnia 2004 r. w sprawie higieny środkow spożywczych (z poźn. zm.)”. Dz. Urz. UE L 139, s. 1, z 30.04.2004.
  • [22] Sachadyn-Krol Monika, Małgorzata Materska, Barbara Chilczuk, Monika Karaś, Anna Jakubczyk, Irena Perucka, Izabella Jackowska. 2016. „Ozone-induced changes in the content of bioactive compounds and enzyme activity during storage of pepper fruits”. Food Chemistry211 : 59-67.
  • [23] Savi Geovana D., Karim C. Piacentini, Karol O. Bittencourt, Vildes M. Scussel. 2014. „Ozone treatment efficiency on fusarium graminearum and deoxynivalenol degradation and its effects on whole wheat grains (Triticum aestivum L.) quality and germination”. Journal of Stored Products Research 59 : 245-53.
  • [24] Segat Annalisa, Marialuisa Biasutti, Lucilla Iacumin, Giuseppe Comi, Federico Baruzzi, Cristian Carboni, Nadia Innocente. 2014. „Use of ozone in production chain of high moisture Mozzarella cheese”. LWT – Food Science and Technology 55 (2) : 513-20.
  • [25] Selma Maria V., Ana Allende, Francisco Lopez-Galvez, Maria A. Conesa, Maria I. Gil. 2008. „Disinfection potential of ozone, ultraviolet-c and their combination in wash water for the fresh-cut vegetable industry”. Food Microbiology 25 (6) : 809-14.
  • [26] Souza Lauana Pellanda de, Leda Rita D’Antonino Faroni, Fernanda Fernandes Heleno, Frederico Garcia Pinto, Maria Eliana Lopes Ribeiro de Queiroz, Lucas Henrique Figueiredo Prates. 2018. „Ozone treatment for pesticide removal from carrots: optimization by response surface methodology”. Food Chemistry 243 : 435-41.
  • [27] Sung Hye-Jung, Won-Jae Song, Kwang-Pyo Kim, Sangryeol Ryu, Dong-Hyun Kang. 2014. „Combination effect of ozone and heat treatments for the inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in apple juice”. International Journal of Food Microbiology 171 : 147-53.
  • [28] „Timeline on Australian Listeriosis Outbreak Has yet to Expire”. 2018. Food Safety News. 21 marzec 2018. http://www.foodsafetynews.com/2018/03/timeline-on-australian-listeriosis-outbreak-has-yet-to-expire/.
  • [29] Varga Laszlo, Szigeti Jenő. 2016. „Use of ozone in the dairy industry: A review”. International Journal of Dairy Technology 69 (2): 157–68. https://doi.org/10.1111/1471-0307.12302.
  • [30] Wang Qing, Sarah Markland, Kalmia E. Kniel. 2015. „Inactivation of human norovirus and its surrogates on alfalfa seeds by aqueous ozone”. Journal of Food Protection 78 (8) : 1586-91.
  • [31] Wani Shreya, Jeremy Barnes, Ian Singleton. 2016. „Investigation of potential reasons for bacterial survival on ‘ready-to-eat’ leafy produce during exposure to gaseous ozone”. Postharvest Biology and Technology 111 : 185-90.
  • [32] Wani Shreya, Jagpreet K. Maker, Joseph R. Thompson, Jeremy Barnes, Ian Singleton. 2015. „Effect of ozone treatment on inactivation of Escherichia coli and Listeria sp. On spinach”. Agriculture 5 (2) : 155-69.
  • [33] „WHO Urges 16 Countries to Join in Fight against Deadly Outbreak”. 2018. Food Safety News. 21 marca 2018. http://www.foodsafetynews.com/2018/03/who-urges-16-countries-to-join-in-fight-against-deadly-outbreak/.
  • [34] Xu Wenqing, Changqing Wu. 2014. „Different efficiency of ozonated water washing to inactivate Salmonella enterica Typhimurium on green onions, grape tomatoes, and green leaf lettuces”. Journal of Food Science 79 (3) : M378-83.
  • [35] Yeoh Wei Keat, Asgar Ali, Charles F. Forney. 2014. „Effects of ozone on major antioxidants and microbial populations of fresh-cut papaya”. Postharvest Biology and Technology 89 : 56–58.
  • [36] Young Christopher J., Honghui Zhu, Ting Zhou. 2006. „Degradation of trichothecene mycotoxins by aqueous ozone”. Food and Chemical Toxicology 44 (3) : 417-24.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-771af7d8-bc7b-400a-ba6f-fee99d746488
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.