PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Evaluation of dimensional accuracy and surface integrity of cylindrical array microelectrodes and cylindrical array microholes machined by EDM

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the loss self-finishing method based on EDM reverse copy principle was proposed aiming to enhance the prepared efficiency of cylindrical array microholes. First, the effects of geometric parameters of microelectrodes on the diameter consistent error, inlet and outlet deviation, section profile, surface roughness parameters and the heat affected zone thickness were quantitatively investigated. The forming accuracy of cylindrical array microelectrodes obtained by self-finishing and multi-finishing methods were contrastively analyzed. Furthermore, 8 × 8 cylindrical array microelectrodes with diameter of about 185.18 μm and length of 2168.79 μm were fabricated by the loss self-finishing method for the first time. Besides, the size accuracy, surface morphology and surface roughness parameters of cylindrical array microholes machined using array microelectrodes prepared by loss self-finishing method were evaluated. Experimental results disclosed that the average consistent errors of inlet and outlet diameter for cylindrical array microholes, respectively, were 1.495 μm and 3.13 μm, indicating that the cylindrical array microelectrodes obtained by loss self-finishing method are capable to manufacture cylindrical array microholes with good surface quality and high dimensional accuracy.
Rocznik
Strony
art. no. e46, 2022
Opis fizyczny
Bibliogr. 44 poz., fot., rys., wykr.
Twórcy
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, People’s Republic of China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, People’s Republic of China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, People’s Republic of China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, People’s Republic of China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, People’s Republic of China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, People’s Republic of China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, People’s Republic of China
Bibliografia
  • 1. Fan KC, Ho CC, Mou JI. Development of a multiple-microhole aerostatic air bearing system. J Micromech Microeng. 2002;12(5):636.
  • 2. Zhang Y, Zhu D, Xu ZY. Fundamental research on electro-chemical and discharge machining for micro hole. J Mech Eng. 2018;1:26.
  • 3. Wang ZW, Cong Y. Study on machining quality of zirconia ceramic hole grinding based on rotating ultrasound vibration. Diam Abrasives Eng. 2020;1:24–8.
  • 4. Nam JS, Lee PH, Lee SW. Experimental characterization of micro-drilling process using nano fluid minimum quantity lubrication. Int J Mach Tool Manu. 2011;51(7–8):649–52.
  • 5. Habib S, Okada A. Influence of electrical discharge machining parameters on cutting parameters of carbon fiber-reinforced plastic. Mach Sci Technol. 2016;20:99–114.
  • 6. Meng LN, Wang AH, Wu Y, Wang X, Xia HB, Wang YN. Blind micro-hole array Ti6Al4V templates for carrying biomaterials fabricated by fiber laser drilling. J Mater Process Technol. 2015;222:335–43.
  • 7. Zhu D, Qu NS, Li HS, Zeng YB, Li DL, Qian SQ. Electrochemical micro- machining of microstructures of micro hole and dimple array. CIRP Ann Manuf Technol. 2009;58(1):177–80.
  • 8. Mouralova K, Bednar J, Benes L, Hrabec P, Kalivoda M, Fries J. The analysis of EDM electrodes wear in corners and edges. Archiv Civ Mech Eng. 2020;20(130):1–14.
  • 9. Muthuramalingam T, Mohan B. A review on influence of electrical process parameters in EDM process.Archiv Civ Mech Eng. 2015; 15(1):87–94.
  • 10. Shan ZZ, Zhou C, Chen GY, Dai LZ. Experimental study on electro-discharge dressing of super-abrasive grinding wheel using different dielectric. Diam Abrasives Eng. 2020;5:79–84.
  • 11. Sun Y, Jin LY, Gong YD, Wen XL, Yin GQ, Wen Q, Tang BJ. Experimental evaluation of surface generation and force time-varying characteristics of curvilinear grooved micro end mills fabricated by EDM. J Manuf Process. 2022;73:799–814. https://doi.org/10.1016/j.jmapro.2021.11.049.
  • 12. Teicher U, Muller S, Munzner J, Nestler A. Micro-EDM of carbon fibre-re- inforced plastics. Procedia CIRP. 2013;6:320–5.
  • 13. Ahmad JYS, Shinde SR. Machinability of carbon/epoxy composites by electrical discharge machining. Int J Mach Mach Mater. 2016;18:3–17.
  • 14. Li HC, Wang ZL, Wang YK. Micro-EDM drilling of ZrB2-SiC-graphite composite using micro sheet-cylinder tool electrode. Int J Adv Manuf Technol. 2017;92(5–8):2033–41.
  • 15. Wen Z, Liang J, Liu C, Pei H, Wen S, Yue Z. Prediction method for creep life of thin-wall specimen with film cooling holes in Ni-based single-crystal superalloy. Int J Mech Sci. 2018;141:276–89.
  • 16. Wang JP, Liang JW, Wen ZX, Yang, YQ, Yue ZF. The inter-hole interference on creep deformation behavior of nickel-based single crystal specimen with film- cooling holes. Int J Mech Sci. 2019;163,105090.
  • 17. Yang ZC, Zhu LD, Zhang GX, Ni CB, Lin B. Review of ultrasonic vibration- assisted machining in advanced materials. Int J Mach Tool Manu. 2020;156:1–34.
  • 18. Xing Q, Yao Z, Zhang Q. Effects of processing parameters on processing performances of ultrasonic vibration-assisted micro-EDM. Int J Adv Manuf Technol. 2021;112(10):1–16.
  • 19. Jahan MP, Wong YS, Rahman M. A comparative experimental investigation of deep hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304). Int J Adv Manuf Technol. 2010;46(9–12):1145–60.
  • 20. Mustafa A, Ulas C, Ahmet H. Optimization of micro-EDM drilling of inconel 718 superalloy. Int J Adv Manuf Technol. 2013;66(5–8):1015–25.
  • 21. Dave HK, Mathai V J, Desai KP, Raval H K. Studies on quality of micro holes generated on Al100 using micro electric discharge machining process.Int J Adv Manuf Technol. 2015; 76 :127–140.
  • 22. Kliuev M, Boccadoro M, Perez R, DalBo W, Sternimann J. EDM drilling and shaping of cooling holes in Inconel 718 turbine blades. Procedia CIRP. 2016;42:322–7.
  • 23. Dong S, Wang Z, Wang Y, Zhang J. Micro-EDM drilling of high aspect ratio micro-holes and in situ surface improvement in C17200 beryllium copper alloy. J Alloy Compd. 2017;727:1157–64.
  • 24. Pilligrin JC, Asokan P, Jerald J. Tool speed and polarity effects in micro-EDM drilling of 316L stainless steel. Prod Manuf Res. 2017;5(1):99–117.
  • 25. Pandey AK, Gautam GD. Grey relational analysis-based genetic algorithm optimization of electrical discharge drilling of Nimonic-90 superalloy. J Br Soc Mech Sci Eng. 2018;40:117.
  • 26. Li Z, Bai J, Cao Y, Wang Y, Zhu G. Fabrication of microelectrode with large aspect ratio and precision machining of micro-hole array by micro-EDM. J Mater Process Technol. 2019;268:70–9.
  • 27. Aligiri E, Yeo SH, Tan PC. A new tool wear compensation method based on real-time estimation of material removal volume in micro-EDM. J Mater Process Technol. 2010;210(15):2292–303.
  • 28. Nirala CK, Saha P. Precise EDM-drilling using real-time indirect tool wear compensation.J Mater Process Technol. 2017; 240:176–189.
  • 29. Hung JC, Lin JK, Yan BH. Using a helical micro-tool in micro-EDM combined with ultrasonic vibration for micro-hole machining. J Micro Mech Micro Eng. 2006;16(12):2705.
  • 30. Liu HS, Yan BH, Huang FY, Qiu KH. A study on the characterization of high nickel alloy micro-holes using micro-EDM and their applications. J Mater Process Technol. 2005;169:418–26.
  • 31. Plaza S, Sanchez JA, Perez E. Experimental study on micro EDM-drilling of Ti6Al4V using helical electrode. Precis Eng. 2014;38(4):821–7.
  • 32. Wang ZQ, Hu G, Feng ZF. Micro hole machining using double helix electrodes in electro discharge machining. J Cent South Univ Sci Technol. 2015;46:2857–62.
  • 33. Kumar R, Singh I. A modified electrode design for improving process performance of electric discharge drilling. J Mater Process Technol. 2019;264:211–9.
  • 34. Kumar R, Kumar A, Singh I. Electric discharge drilling of micro holes in CFRP laminates. J Mater Process Technol. 2018;259:150–8.
  • 35. Mastud SA, Garg M, Singh R. Recent developments in the reverse micro- electrical discharge machining in the fabrication of arrayed micro-features. P I Mech Eng C-J Mec. 2012;226(2):367–83.
  • 36. Chen S T. Fabrication of high-density micro holes by upward batch micro EDM. J Micromech Microeng. 2008;18(8): 085002.
  • 37. Chen ST. A high-efficiency approach for fabricating mass micro holes by batch micro EDM. J Micromech Microeng. 2007;17(10):1961.
  • 38. Zhang L, Tong H, Li Y. Precision machining of micro tool electrodes in micro EDM for drilling array micro holes. Precis Eng. 2015;39:100–6.
  • 39. Huan L, Jicheng B, Yan C. Micro-electrode wear and compensation to ensure the dimensional consistency accuracy of micro-hole array in micro-EDM drilling. Int J Adv Manuf Technol. 2020;111(9–10):1–13.
  • 40. Takahata K, Gianchandani YB. Batch mode Micro-electro-discharge machining. J Microelectromech S. 2002;11:102–11.
  • 41. Zhang Y, Xie B.Investigation on hole diameter non-uniformity of hole arrays by ultrasonic vibration-assisted EDM.Int J Adv Manuf Technol. 2021; 112: 3083- 3091.
  • 42. Gong S, Sun Y, Jin L, Su Z. Experimental study on fabricating micro- holes in DD5 single-crystal nickel-based superal-loy using electrical discharge drilling. Arch Civ Mech Eng. 2020;20(3):1–16.
  • 43. Li C, Piao Y, Meng B, Hu Y, Li L, Zhang F. Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals. Int J Mach Tool Manu. 2022; 172: 103827.
  • 44. Ding ZS, Sun GX, Guo MX, Jiang XH, Li BZ, Liang SY. Effect of phase transition on micro-grinding-induced residual stress. J Mater Process Technol. 2020; 281: 116647.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-771a61ae-568c-4f4f-87d0-142ed13a6236
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.