PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A simple crime hotspot forecasting algorithm

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (15 ; 06-09.09.2020 ; Sofia, Bulgaria)
Języki publikacji
EN
Abstrakty
EN
Crime hotspot forecasting is an important part of crime prevention and reducing the delay between a 911 call and the physical intervention. Current developments in the field focus on enriching the historical data and sophisticated point process analysis methods with a fixed grid. In the paper we present a simple spatio-temporal point process allowing one to perform exhaustive (literal) grid searches. We then show that this approach can compete with more complex methods, as evidenced by the results on data collected by the Portland Bureau of Police. Finally, we discuss the advantages and potential implications of the new method.
Rocznik
Tom
Strony
23--26
Opis fizyczny
Bibliogr. 23 poz., wz., rys.
Twórcy
  • University of Warsaw ul. Banacha 2, 02-097 Warsaw, Poland
  • deepsense.ai, Al. Jerozolimskie 162A, 02-342 Warsaw, Poland
  • deepsense.ai, Al. Jerozolimskie 162A, 02-342 Warsaw, Poland
  • deepsense.ai, Al. Jerozolimskie 162A, 02-342 Warsaw, Poland
Bibliografia
  • 1. W. Gorr, A. Olligschlaeger, and Y. Thompson, “Short-term forecasting of crime,” International Journal of Forecasting, vol. 19, pp. 579–594, 2003.
  • 2. J. Cohen, W. L. Gorr, and A. M. Olligschlaeger, “Leading indicators and spatial interactions: A crime-forecasting model for proactive police deployment,” Geographical Analysis, vol. 39, pp. 105–127, 2007.
  • 3. L. W. Kennedy, J. M. Caplan, and E. Piza, “Risk clusters, hotspots, and spatial intelligence: Risk terrain modeling as an algorithm for police resource allocation strategies,” Journal of Quantitative Criminology, vol. 27, pp. 339–362, 2011.
  • 4. X. Wang, M. S. Gerber, and D. E. Brown, “Automatic crime prediction using events extracted from twitter posts,” in Social Computing Behavioral - Cultural Modeling and Prediction. Springer Berlin Heidelberg, 2012, pp. 231–238.
  • 5. K. J. Bowers, S. D. Johnson, and K. Pease, “Prospective hot-spotting: The future of crime mapping?” The British Journal of Criminology, vol. 44, pp. 641–658, 2004.
  • 6. S. Chainey, L. Tompson, and S. Uhlig, “The utility of hotspot mapping for predicting spatial patterns of crime,” Security Journal, vol. 21, pp. 4–28, 2008.
  • 7. M. Fielding and V. Jones, “Disrupting the optimal forager: Predictive risk mapping and domestic burglary reduction in trafford, greater manchester,” International Journal of Police Science & Management, vol. 14, pp. 30–41, 2012.
  • 8. W. L. Gorr and Y. Lee, “Early warning system for temporary crime hot spots,” Journal of Quantitative Criminology, vol. 31, pp. 25–47, 2015.
  • 9. M. D. Porter and B. J. Reich, “Evaluating temporally weighted kernel density methods for predicting the next event location in a series,” Annals of GIS, vol. 18, pp. 225–240, 2012.
  • 10. M. A. Boni and M. S. Gerber, “Automatic optimization of localized kernel density estimation for hotspot policing,” in Proc. 15th IEEE Int. Conf. Machine Learning and Applications (ICMLA), Dec. 2016, pp. 32–38.
  • 11. H. Liu and D. E. Brown, “Criminal incident prediction using a point-pattern-based density model,” International Journal of Forecasting, vol. 19, pp. 603–622, 2003.
  • 12. M. A. Taddy, “Autoregressive mixture models for dynamic spatial poisson processes: Application to tracking intensity of violent crime,” Journal of the American Statistical Association, vol. 105, pp. 1403–1417, 2010.
  • 13. G. Rosser and T. Cheng, “Improving the robustness and accuracy of crime prediction with the self-exciting point process through isotropic triggering,” Applied Spatial Analysis and Policy, pp. 1–21, 2016.
  • 14. G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg, and G. E. Tita, “Self-exciting point process modeling of crime,” Journal of the American Statistical Association, vol. 106, pp. 100–108, 2011.
  • 15. G. Mohler, “Marked point process hotspot maps for homicide and gun crime prediction in chicago,” International Journal of Forecasting, vol. 30, pp. 491–497, 2014.
  • 16. G. O. Mohler, M. B. Short, S. Malinowski, M. Johnson, G. E. Tita, A. L. Bertozzi, and P. J. Brantingham, “Randomized controlled field trials of predictive policing,” Journal of the American Statistical Association, vol. 110, pp. 1399–1411, 2015.
  • 17. C. Loeffler and S. Flaxman, “Is gun violence contagious? A spatiotemporal test,” Journal of Quantitative Criminology, 2017.
  • 18. W. Perry, B. McInnis, C. Price, S. Smith, and J. Hollywood, “Predictive policing: The role of crime forecasting in law enforcement operations,” RAND Corporation, Santa Monica, Tech. Rep., 2013.
  • 19. National Institute of Justice, “Real-Time Crime Forecasting Challenge,” https://www.nij.gov/funding/Pages/fy16-crime-forecasting-challenge.aspx, 2017
  • 20. L. A. Rastrigin, “About convergence of random search method in extremal control of multi-parameter systems,” Automation and Remote Control, vol. 24, pp. 1467–1473, 1963.
  • 21. J. M. Hunt, “Do crime hot spots move? exploring the effects of the modifiable areal unit problem and modifiable temporal unit problem on crime hot spot stability,” Ph.D. dissertation, 2016.
  • 22. G. Mohler and M. D. Porter, “Rotational grid, PAI-maximizing crime forecasts,” 2018, to appear in Statistical Analysis and Data Mining.
  • 23. S. Flaxman, M. Chirico, P. Pereira, and C. Loeffler, “Scalable highresolution forecasting of sparse spatiotemporal events with kernel methods: a winning solution to the nij "Real-Time Crime Forecasting Challenge",” 2018.
Uwagi
1. Track 1: Artificial Intelligence
2. Technical Session: 15th International Symposium Advances in Artificial Intelligence and Applications
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7719d3bc-da47-4a05-ae04-e14d4ab7aef8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.