PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A useful classification of organic reactions based on the flux of the electron density

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A useful classification of polar organic reactions in Forward Electron Density Flux (FEDF) and Reverse Electron Density Flux (REDF), based on the unambiguously analysis of the direction of the flux of the global electron density transfer (GEDT) at the transition state structures (TSs), has been recently proposed (RSC Adv. 2020, 10, 15394) within the Molecular Electron Density Theory. Further, non-polar reactions have been classified as Null Electron Density Flux (NEDF) (Eur. J. Org. Chem. 2020, 5938). This classification allows characterizing the nucleophilic/electrophilic species participating in polar reactions. Analysis of the electronic chemical potential µ, and the electrophilicity ω and nucleophilicity N indices, defined within Conceptual DFT, at the ground state (GS) of the reagents also permits to establish this classification of polar reactions.
Czasopismo
Rocznik
Strony
1--24
Opis fizyczny
Bibliogr. 65 poz., il. kolor., rys., wykr.
Twórcy
  • Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
  • Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
Bibliografia
  • [1] Ingold, C.K.; Significance of Tautomerism and of the Reactions of Aromatic Compounds in the Electronic Theory of Organic Reactions. J. Chem. Soc. 1933, 1120-1127. DOI: 10.1039/jr9330001120
  • [2] Lapworth, A.; Replaceability of Halogen Atoms by Hydrogen Atoms: A General Rule. Nature 1925, 115-625
  • [3] Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P.; A Molecular Electron Density Theory Study of the Participation of Tetrazines in Aza-Diels-Alder Reactions. RSC Adv. 2020, 10, 15394-15405. DOI: 10.1039/D0RA01548B
  • [4] Domingo, L.R.; Kula, K.; Ríos‐Gutiérrez, M.; Unveiling the Reactivity of Cyclic Azomethine Ylides in [3+2] Cycloaddition Reactions within the Molecular Electron Density Theory. Eur. J. Org. Chem. 2020, 37, 5938-5948. DOI: 10.1002/ejoc.202000745
  • [5] Domingo, L.; Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules 2016, 21, 1319.DOI: 10.3390/molecules21101319
  • [6] Mulliken, R.S.; Spectroscopy, Molecular Orbitals, and Chemical Bonding. Science 1967, 157, 13-24. DOI: 10.1126/science.157.3784.13
  • [7] Schrödinger, E.; An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev. 1926, 28 (6), 1049-1070. DOI: 10.1103/PhysRev.28.1049
  • [8] Fukui, K., A Simple Quantum-Theoretical Interpretation of the Chemical Reactivity of Organic Compounds, in.: Molecular orbitals, in chemistry, physics, and biology. A Tribute to R. S. Mulliken, 1964, 513-537, Academic Press.
  • [9] Fleming, I., Molecular Orbitals and Organic Chemical Reactions. 2009, John Wiley & Sons Ltd. DOI: 10.1002/9780470684306
  • [10] Hückel, E.; Quantentheoretische Beiträge zum Benzolproblem: I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen. Z. Physik 1931, 70, 204-286. DOI: 10.1007/BF01339530
  • [11] Hückel, E.; Quanstentheoretische Beiträge zum Benzolproblem: II. Quantentheorie der induzierten Polaritäten. Z. Physik 1931, 72, 310-337. DOI: 10.1007/BF01341953
  • [12] Hückel, E.; Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III. Z. Physik 1932, 76, 628-648. DOI: 10.1007/BF01341936
  • [13] Coulson, C.A., O’Leary, B., Mallion, R.B., Hückel Theory for Organic Chemists. 1978, Academic Press.
  • [14] Sustmann, R.; Trill, H.; Substituent Effects in 1,3-Dipolar Cycloadditions of Phenyl Azide. Angew. Chem. Int. Ed. Engl. 1972, 11, 838-840. DOI: 10.1002/anie.197208382
  • [15] Sustmann, R.; Orbital Energy Control of Cycloaddition Reactivity. Pure and Applied Chemistry 1974, 40, 569-593. DOI: 10.1351/pac197440040569
  • [16] Houk, K.N.; Sims, Joyner.; Duke, R.E.; Strozier, R.W.; George, J.K.; Frontier Molecular Orbitals of 1,3 Dipoles and Dipolarophiles. J. Am. Chem. Soc. 1973, 95, 7287-7301. DOI: 10.1021/ja00803a017
  • [17] Houk, K.N.; Sims, Joyner.; Watts, C.R.; Luskus, L.J.; Origin of Reactivity, Regioselectivity, and Periselectivity in 1,3-Dipolar Cycloadditions. J. Am. Chem. Soc. 1973, 95, 7301-7315. DOI: 10.1021/ja00803a018
  • [18] Hohenberg, P.; Kohn, W.; Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864-B871. DOI: 10.1103/PhysRev.136.B864
  • [19] Kohn, W.; Sham, L.J.; Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133-A1138. DOI: 10.1103/PhysRev.140.A1133
  • [20] Scerri, E.R.; Have Orbitals Really Been Observed? J. Chem. Educ. 2002, 79, 310. DOI: 10.1021/ed079p310.1
  • [21] Coppens, P.; X-Ray Charge Densities and Chemical Bonding. 1997, Oxford University Press. DOI: 10.1093/oso/9780195098235.001.0001
  • [22] Koritsanszky, T.S.; Coppens, P.; Chemical Applications of X-Ray Charge-Density Analysis. Chem. Rev. 2001, 101, 1583-1628. DOI: 10.1021/cr990112c
  • [23] Parr, R.G.; Yang, W.; Density-Functional Theory of the Electronic Structure of Molecules. Annu. Rev. Phys. Chem. 1995, 46, 701-728. DOI: 10.1146/annurev.pc.46.100195.003413
  • [24] Parr, R.G.; Pearson, R.G.; Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512-7516. DOI: 10.1021/ja00364a005
  • [25] Parr, R.G.; Szentpály, L. v.; Liu, S.; Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. DOI: 10.1021/ja983494x
  • [26] Domingo, L.R.; Chamorro, E.; Pérez, P.; Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study. J. Org. Chem. 2008, 73, 4615-4624. DOI: 10.1021/jo800572a
  • [27] Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P.; Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. DOI: 10.3390/molecules21060748
  • [28] Domingo, L.R., Ríos‐Gutiérrez, M., Application of Reactivity Indices in the Study of Polar Diels-Alder Reactions, In.: Conceptual Density Functional Theory, (Ed. Liu, S.) 2022, 481-502, Wiley. DOI: 10.1002/9783527829941.ch24
  • [29] Hehre, W.J., Radom, L., Schleyer, P.V.R., Pople, J.A., Ab Initio Molecular Orbital Theory. 1986, Wiley.
  • [30] Bader, R.F.W.; Molecular Fragments or Chemical Bonds. Acc. Chem. Res. 1975, 8, 34-40. DOI: 10.1021/ar50085a005
  • [31] Bader, R.F.W., Atoms in Molecules: A Quantum Theory. 1990, Clarendon Press,
  • [32] Becke, A.D.; Edgecombe, K.E.; A Simple Measure of Electron Localization in Atomic and Molecular Systems. The Journal of Chemical Physics 1990, 92, 5397-5403. DOI: 10.1063/1.458517
  • [33] Houk, K.N.; Gonzalez, J.; Li, Y.; Pericyclic Reaction Transition States: Passions and Punctilios, 1935-1995. Acc. Chem. Res. 1995, 28, 81-90. DOI: 10.1021/ar00050a004
  • [34] Domingo, L.R.; A New C-C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv. 2014, 4, 32415-32428. DOI: 10.1039/C4RA04280H
  • [35] Domingo, L.R.; Ríos-Gutiérrez, M.; Silvi, B.; Pérez, P.; The Mysticism of Pericyclic Reactions: A Contemporary Rationalisation of Organic Reactivity Based on Electron Density Analysis. Eur. J. Org. Chem. 2018, 9, 1107-1120. DOI: 10.1002/ejoc.201701350
  • [36] Domingo, L.R.; Pérez, P.; Sáez, J.A.; Understanding the Local Reactivity in Polar Organic Reactions through Electrophilic and Nucleophilic Parr Functions. RSC Adv. 2013, 3, 1486-1494. DOI: 10.1039/C2RA22886F
  • [37] Sauer, J.; Wiest, H.; Mielert, A.; Eine Studie Der DIELS‐ALDER ‐Reaktion, I. Die Reaktivität von Dienophilen Gegenüber Cyclopentadien Und 9.10‐Dimethyl‐anthracen. Chem. Ber. 1964, 97, 3183-3207. DOI: 10.1002/cber.19640971129
  • [38] Carruthers, W., Some Modern Methods of Organic Synthesis. 1978, Cambridge University Press.
  • [39] Domingo, L.R.; José Aurell, M.; Pérez, P.; Contreras, R.; Origin of the Synchronicity on the Transition Structures of Polar Diels−Alder Reactions. Are These Reactions [4 + 2] Processes? J. Org. Chem. 2003, 68, 3884-3890. DOI: 10.1021/jo020714n
  • [40] Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P.; How Does the Global Electron Density Transfer Diminish Activation Energies in Polar Cycloaddition Reactions? A Molecular Electron Density Theory Study. Tetrahedron 2017, 73, 1718-1724. DOI: 10.1016/j.tet.2017.02.012
  • [41] Sanderson, R.T.; Partial Charges on Atoms in Organic Compounds. Science 1955, 121, 207-208. DOI: 10.1126/science.121.3137.207
  • [42] Sanderson, R.T., Chemical Bonds and Bond Energy. 1976, Academic Press.
  • [43] Domingo, L.R.; Sáez, J.A.; Understanding the Mechanism of Polar Diels-Alder Reactions. Org. Biomol. Chem. 2009, 7, 3576. DOI: 10.1039/b909611f
  • [44] R. Domingo, L.; Chamorro, E.; Perez, P.; Understanding the High Reactivity of the Azomethine Ylides in [3 + 2] Cycloaddition Reactions. LOC 2010, 7, 432-439. DOI: 10.2174/157017810791824900
  • [45] Ríos‐Gutiérrez, M.; Domingo, L.R.; Unravelling the Mysteries of the [3+2] Cycloaddition Reactions. European J Organic Chem 2019, 2019, 267-282. DOI: 10.1002/ejoc.201800916
  • [46] Domingo, L.R.; Sáez, J.A.; Understanding the Electronic Reorganization along the Nonpolar [3 + 2] Cycloaddition Reactions of Carbonyl Ylides. J. Org. Chem. 2011, 76, 373-379. DOI: 10.1021/jo101367v
  • [47] Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P.; A Molecular Electron Density Theory Study of the Reactivity and Selectivities in [3 + 2] Cycloaddition Reactions of C,N-Dialkyl Nitrones with Ethylene Derivatives. J. Org. Chem. 2018, 83, 2182-2197. DOI: 10.1021/acs.joc.7b03093
  • [48] Ríos-Gutiérrez, M.; Domingo, L.R.; Jasiński, R.; Unveiling the High Reactivity of Experimental Pseudodiradical Azomethine Ylides within Molecular Electron Density Theory. Phys. Chem. Chem. Phys. 2023, 25, 314-325. DOI: 10.1039/D2CP05032C
  • [49] Oliveira, B.L.; Guo, Z.; Bernardes, G.J.L.; Inverse Electron Demand Diels-Alder Reactions in Chemical Biology. Chem. Soc. Rev. 2017, 46, 4895-4950. DOI: 10.1039/C7CS00184C
  • [50] Spino, C.; Rezaei, H.; Dory, Y.L.; Characteristics of the Two Frontier Orbital Interactions in the Diels−Alder Cycloaddition. J. Org. Chem. 2004, 69, 757-764. DOI: 10.1021/jo0353740
  • [51] Domingo, L.R.; Why Do Electron-Deficient Dienes React Rapidly in Diels-Alder Reactions with Electron-Deficient Ethylenes? A Density Functional Theory Analysis. Eur. J. Org. Chem. 2004, 2004, 4788-4793. DOI: 10.1002/ejoc.200400522
  • [52] Domingo, L.R.; Pérez, P.; Understanding the Higher-Order Cycloaddition Reactions of Heptafulvene, Tropone, and Its Nitrogen Derivatives, with Electrophilic and Nucleophilic Ethylenes inside the Molecular Electron Density Theory. New J. Chem. 2022, 46, 11520-11530. DOI: 10.1039/D2NJ01540D
  • [53] Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P.; Unveiling the Chemistry of Higher-Order Cycloaddition Reactions within the Molecular Electron Density Theory. Chemistry 2022, 4 (3), 735-752. DOI: 10.3390/chemistry4030052
  • [54] Domingo, L.R.; Ríos-Gutiérrez, M.; Aurell, M.J.; Unveiling the Ionic Diels-Alder Reactions within the Molecular Electron Density Theory. Molecules 2021, 26, 3638. DOI: 10.3390/molecules26123638
  • [55] Domingo, L.R.; Ríos-Gutiérrez, M.; Aurell, M.J.; Unveiling the Intramolecular Ionic Diels-Alder Reactions within Molecular Electron Density Theory. Chemistry 2021, 3, 834-853. DOI: 10.3390/chemistry3030061
  • [56] Domingo, L.R.; A Theoretical Study of the Molecular Mechanism of the Reaction between N,N-Dimethylmethyleneammonium Cation and Cyclopentadiene. J. Org. Chem. 2001, 66, 3211-3214. DOI: 10.1021/jo001332p
  • [57] Becke, A.D.; Density‐functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics 1993, 98, 5648-5652. DOI: 10.1063/1.464913
  • [58] Lee, C.; Yang, W.; Parr, R.G.; Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785-789. DOI: 10.1103/PhysRevB.37.785
  • [59] Zhao, Y.; Truhlar, D.G.; Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van Der Waals Interactions. J. Phys. Chem. A 2004, 108, 6908-6918. DOI: 10.1021/jp048147q
  • [60] Chai, J.; Head-Gordon, M.; Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615. DOI: 10.1039/b810189b
  • [61] Reed, A.E.; Weinstock, R.B.; Weinhold, F.; Natural Population Analysis. The Journal of Chemical Physics 1985, 83, 735-746. DOI: 10.1063/1.449486
  • [62] Reed, A.E.; Curtiss, L.A.; Weinhold, F.; Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899-926. DOI: 10.1021/cr00088a005
  • [63] Frish, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al.; Gaussian 16, Revision A.03., 2016.
  • [64] Dennington, R.; Keith, T.A.; Millam, J.M.; GaussView, Version 6., 2016.
  • [65] Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E.; UCSF Chimera-A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605-1612. DOI: 10.1002/jcc.20084
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77182287-a602-4e56-a74f-f4b1c92171c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.