PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigations of the influence of radial gas mixing in an inert ceramic foam bed on thermal combustion of lean methane–air mixtures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy
Języki publikacji
EN
Abstrakty
EN
The paper discusses the application possibilities of ceramic foam in a thermal combustion process of a lean methane-air mixture. The experiments were done in a ceramic foam bed. The foam (Vukopor ® A) was made mainly of Al 2O 3. The foam samples were packed in a tubular reactor symmetrically placed in a laboratory furnace. It was assumed that the tested foam should have a surface close to the monolith surface area which was tested in a previous work (Pawlaczyk and Gosiewski, 2015). Pore density of the tested foam was 10 PPI. The tested air mixture contained 0.51 - 0.76 vol. % of methane. The results show that thermal methane oxidation in foam is possible in the acceptable range of temperatures. The combustion process in foam is characterized by similar ignition temperature to tests carried out in monolith, a more intense course, and better methane conversion at lower temperatures.
Rocznik
Strony
art. no. e41
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Polish Academy of Sciences, Institute of Chemical Engineering, Baltycka 5, 44-100 Gliwice, Poland
  • Polish Academy of Sciences, Institute of Chemical Engineering, Baltycka 5, 44-100 Gliwice, Poland
Bibliografia
  • 1. Baris K., 2013. Assessing ventilation air methane (VAM) mitigation and utilization opportunities: A case study at Kozlu Mine, Turkey. Energy Sustainable Dev., 17, 13–23. DOI: 10.1016/j.esd.2012.09.002.
  • 2. Cerri I., Saracco G., Specchia V., 2000. Methane combustion over low-emission catalytic foam burners. Catal. Today, 60, 21–32. DOI: 10.1016/S0920-5861(00)00313-8.
  • 3. Ciambelli P., Palma V., Palo E., 2010. Comparison of ceramic honeycomb monolith and foam as Ni catalyst carrier for methane autothermal reforming. Catal. Today, 155, 92–100. DOI: 10.1016/j.cattod.2009.01.021.
  • 4. Gancarczyk A., Iwaniszyn M., Piątek M., Korpyś M., Sindera K., Jodłowski P.J., Łojewska J., KoŁodziej A., 2018. Catalytic combustion of low-concentration methane on structured catalyst supports. Ind. Eng. Chem. Res., 57, 10281–10291. DOI: 10.1021/acs.iecr.8b01987.
  • 5. Gancarczyk A., Sindera K., Iwaniszyn M., Piątek M., Macek W., Jodłowski P.J., Wroński S., Sitarz M., Łojewska J., Kołodziej A., 2019. Metal foams as novel catalyst support in environmental processes. Catalysts, 9, 587. DOI: 10.3390/catal9070587.
  • 6. Gosiewski K., Pawlaczyk-Kurek A., 2019. Aerodynamic CFD simulations of experimental and industrial thermal flow reversal reactors. Chem. Eng. J., 373, 1367–1379. DOI: 10.1016/j.cej.2019.03.274.
  • 7. Leszczyński B., Gancarczyk A., Wróbel A., Piątek M., Łojewska J., Kołodziej A., Pędrys R., 2016. Global and local thresholding methods applied to X-ray microtomographic analysis of metallic foams. J. Nondestruct. Eval., 35, 35. DOI: 10.1007/s10921-016-0352-x.
  • 8. Liu P.S., Chen G.F., 2014. Chapter six – Applications of porous ceramics, In: Liu P.S., Chen G.F., Porous materials. Processing and Applications. Butterworth-Heinemann, 303-344. DOI: 10.1016/B978-0-12-407788-1.00006-X.
  • 9. Maestri M., Beretta A., Groppi G., Tronconi E., Forzatti P., 2005. Comparison among structured and packed-bed reactors for the catalytic partial oxidation of CH4 at short contact times. Catal. Today, 105, 709–717. DOI: 10.1016/j.cattod.2005.06.045.
  • 10. Palma V., Ricca A., Ciambelli P., 2013. Methane auto-thermal reforming on honeycomb and foam structured catalysts: The role of the support on system performances. Catal. Today, 216, 30–37. DOI: 10.1016/j.cattod.2013.07.001.
  • 11. Patcas F.C., Garrido G.I., Kraushaar-Czarnetzki B., 2007. CO oxidation over structured carriers: A comparison of ceramic foams, honeycombs and beads. Chem. Eng. Sci., 62, 3984–3990. DOI: 10.1016/j.ces.2007.04.039.
  • 12. Pawlaczyk A., Gosiewski K., 2015. Combustion of lean methaneair mixtures in monolith beds: Kinetic studies in low and high temperatures. Chem. Eng. J., 282, 29–36. DOI: 10.1016/j.cej.2015.02.081.
  • 13. Pawlaczyk A., Gosiewski K.J., 2013. Simplified kinetic model for thermal combustion of lean methane–air mixtures in a wide range of temperatures. Int. J. Chem. Reactor Eng., 11, 111–121. DOI: 10.1515/ijcre-2012-0074.
  • 14. Pawlaczyk-Kurek A., Suwak M., 2021. Will it be possible to put into practice the mitigation of ventilation air methane emissions? Review on the state-of-the-art and emerging materials and technologies. Catalysts, 11, 1141. DOI: 10.3390/catal11101141.
  • 15. Setiawan A., Friggieri J., Kennedy E.M., Dlugogorski B.Z., Stockenhuber M., 2014. Catalytic combustion of ventilation air methane (VAM) – long term catalyst stability in the presence of water vapour and mine dust. Catal. Sci. Technol., 4, 1793–1802. DOI: 10.1039/c4cy00120f.
  • 16. Su S., Chen H., Teakle P., Xue S., 2008. Characteristics of coal mine ventilation air flows. J. Environ. Manage., 86, 44–62. DOI: 10.1016/j.jenvman.2006.11.025.
  • 17. Tsinoglou D.N., Eggenschwiler P.D., Thurnheer T., Hofer P., 2009. A simplified model for natural-gas vehicle catalysts with honeycomb and foam substrates. Proc. Inst. Mech. Eng., Part D: J. Automob. Eng., 223, 819–834. DOI: 10.1243/09544070jauto1095.
  • 18. Twigg M.V., Richardson J.T., 2007. Fundamentals and applications of structured ceramic foam catalysts. Ind. Eng. Chem. Res., 46, 4166–4177. DOI: 10.1021/ie061122o.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7717b09c-1fc1-4d56-883f-fa0860583963
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.