PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical sensitivity test of three-electrode laterolog borehole tool

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Finite element numerical simulation has been carried out to investigate quantitatively the response of the three-electrode laterolog borehole tool (LL3) on radial and vertical heterogeneity of the rock. In order to calculate the apparent resistivity from the electric potential and the current discharge of the measurement electrode the probe coefficient of the LL3 tool with finite electrode extent was determined. Two independent methods, a finite element modeling and a semi-analytical solution, resulted in the probe coefficient of approx. 0.15 m with a relative deviation of 2.4% due to the different geometry, resolution and electronics of the models. It was established that LL3 is only slightly sensitive to the presence of mud when the borehole diameter is d ≤ 30 cm and the ratio of the resistivity of rock and the borehole mud is 1 ≤ Rt/Rm ≤ 1000. Vertical heterogeneity test pointed out that the layer boundaries can be localized exactly even for thin bedded layer (with a thickness of 1 m) and the presence of low-resistive borehole mud. Correction factors were suggested to decrease the biasing effect of the low-resistive borehole mud and the shoulder beds on the apparent resistivity observed by LL3. Finally, it was verified that the probe has large penetration depth with excellent vertical resolution, what explains the enduring popularity of the LL3 tool in well logging.
Czasopismo
Rocznik
Strony
701--712
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Department of Geophysics and Space Sciences, Eötvös Loránd University, Budapest, Hungary
autor
  • Department of Geophysics and Space Sciences, Eötvös Loránd University, Budapest, Hungary
autor
  • Department of Geophysics and Space Sciences, Eötvös Loránd University, Budapest, Hungary
autor
  • Department of Geophysics and Space Sciences, Eötvös Loránd University, Budapest, Hungary
Bibliografia
  • 1. Bała M (2011) Evaluation of electric parameters of anisotropic sandy-shaly miocene formations on the basis of resistivity logs. Acta Geophys 59(5):654–966. doi:10.2478/s11600-011-0033-1
  • 2. Bała M, Cichy A (2015) Evaluating electrical anisotropy parameters in miocene formations in the cierpisz deposit. Acta Geophysica 63(5):1296–1315. doi:10.2478/s11600-014-0252-3
  • 3. Balázs L (2005) Modelling of cone penetration electric tool field. Geophys Trans ELGI 45(1):19–35
  • 4. Balázs L (2009) Modeling of electric DC measurements in inhomogeneous medium [Egyenáramú elektromos mérések elméleti modellezése inhomogén közegekben], PhD Thesis (in Hungarian), Eötvös Loránd University, Budapest, pp 102
  • 5. Cozzolino K, da Silva JD (2007) Synthetic focusing and simulation of dual laterolog tool in axisymmetric subsurface models. J Appl Geophys 61:102–110. doi:10.1016/j.jappgeo.2006.05.001
  • 6. de Witte L, Gould RW (1959) Potential distribution due to a cylindrical electrode mounted on an insulating probe. Geophysics 24(3):566–579
  • 7. Dobróka M, Szabó NP, Turai E (2012) Interval inversion of borehole data for petrophysical characterization of complex reservoirs. Acta Geod Geoph Hung 47(2):172–184. doi:10.1556/AGeod.47.2012.2.6
  • 8. Dobróka M, Szabó NP, Tóth J, Vass P (2016) Interval inversion approach for an improved interpretation of well logs. Geophyics 81(2):D163–D175. doi:10.1190/geo2015-0422.1
  • 9. Drahos D, Galsa A (2007) Finite element modeling of penetration electric sonde [Penetrációs elektromos szonda modellezése véges elemes numerikus módszerrel]. Magy Geofiz 48(1):22–30 (in Hungarian with English abstract)
  • 10. Drahos D, Galsa A (2015) Modeling Groningen effect on deep laterolog. Geosciences and Engineering 4/6:9–21 (ISSN 2063-6997)
  • 11. Ellis DV, Singer JM (2008) Well logging for earth scientists. Springer, Dordrecht, p 692. ISBN 978-1-4020-3738-2
  • 12. Galsa A, Herein M, Drahos D, Herein A (2016) Effect of the eccentricity of normal resistivity borehole tools on the current field and resistivity measurement. J Appl Geophys 134:281–290. doi:10.1016/j.jappgeo.2016.09.001
  • 13. Geo-Log Geophysical and Environmental Ltd. (2017) http://www.geo-log.hu. Accessed 25 June 2017
  • 14. Jarzyna J, Cichy A, Drahos D, Galsa A, Bała MJ, Ossowski A (2016) New methods for modeling laterolog resistivity corrections. Acta Geophys 64(2):417–442. doi:10.1515/acgeo-2016-0012
  • 15. Kaźmierczuk M, Jarzyna J (2006) Improvement of lithology and saturation determined from well logging using statistical methods. Acta Geophys 54(4):378–398. doi:10.2478/s11600-006-0030-y
  • 16. Keys WS (1990) Borehole geophysics applied to ground-water investigations, In: Techniques of water-resources investigations of the United States Geological Survey, chapter 2, United States Government Printing Office, pp 150
  • 17. Liu CR (2017) Theory of electromagnetic well logging. Elsevier, Netherlands, p 732 (9780128040089)
  • 18. Nimeck G, Koch R (2008) A progressive geophysical exploration strategy at the Shea Creek uranium deposit. Lead Edge 27(1):52–63. doi:10.1190/1.2831680
  • 19. Owen JE, Greer WJ (1951) The guard electrode logging system. J Petrol Technol 3(12):347–356
  • 20. Saboorian-Jooybari H, Dejamb M, Chen Z, Pourafshary P (2016) Comprehensive evaluation of fracture parameters by dual laterolog data. J Appl Geophys 131:214–221. doi:10.1016/j.jappgeo.2016.06.005
  • 21. Serra O (2008) The well logging handbook. Éditions Technip, Paris, p 609. ISBN 978-2-7108-0912-8
  • 22. Tittman J (1986) Geophysical well logging. Academic Press Inc., London, p 175
  • 23. Wang H, Shao L, Large DJ, Wignall PB (2011) Constraints on carbon accumulation rate and net primary production in the Lopingian (Late Permian) tropical peatland in SW China. Palaeogeogr Palaeoclimatol Palaeoecol 300:152–157. doi:10.1016/j.palaeo.2010.12.019
  • 24. Zimmerman WBJ (2006) Multiphysics modeling with finite element methods. World Scientific Publishing Company, Singapore, p 422 (981-256-843-3)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77137588-4e70-4032-a3d0-fe9235e5d6ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.