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Abstract: Low-frequency analysis of in-plane motion of an elastic rectangle subject to end loadings together with sliding boundary  
conditions is considered. A perturbation scheme is employed to analyze the dynamic response of the elastic rectangle revealing  
nonhomogeneous boundary-value problems for harmonic and biharmonic equations corresponding to leading and next order expansions, 
respectively. The solution of the biharmonic equation obtained by the separation of variables, a consequence of sliding boundary  
conditions, gives an asymptotic correction to the rigid body motion of the rectangle. The derived explicit approximate formulae are tested 
for different kinds of end loadings together with numerical examples demonstrating the comparison against the exact solutions. 
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1. INTRODUCTION 

Dynamics of elastic structures, an important branch of solid 
mechanics, is of interest in several studies encountered in modern 
industrial applications (see Qin et al., 2008; Martin et al., 2012; 
Wang, 2014; Kudaibergenov et al., 2016; Viverge et al., 2016). 
Because most efforts in determining the exact formulations for 
displacement components and frequencies of such structures 
generally result in intricate transcendental relations, developing 
mathematical models that reveal the eigenfrequencies of the 
system from the traditional equations of rigid body dynamics has 
become an important endeavor in this area. A considerable num-
ber of studies in recent years, therefore, have focused on devel-
oping perturbation approaches allowing further insight into the 
dynamic response of considered elastic structures, e.g., 
(Kaplunov et al., 2019) and (Kaplunov and Şahin, 2020). It is well 
known that the conventional equations of rigid body motion are 
also an application of Newtonian mechanics to elastic solids. We 
mention (Milton and Willis, 2007) that suggest a new methodology 
leading to a better approximation of Newton’s second law of mo-
tion for macroscopic rigid bodies. A distinguished elastodynamic 
homogenization theory for periodic and random inhomogeneous 
media was presented in (Srivastava and Nemat-Nasser, 2012; 
Willis, 1981a; Willis, 1981b), including effective constitutive rela-
tions that are nonlocal in space and time. 

The self-equilibrated loading, the effect of which is generally 
omitted by classical rigid body dynamics may be important for 
various applications, e.g., longitudinal railway dynamics (see 
Kaplunov et al., 2015). Here, the self-equilibrium is not meant in 
the sense of Saint-Venant’s principle for elastic structures, e.g., 
(Vigak and Tokovyi, 2002), see also (Gregory and Wan, 1985), 
and (Kaplunov et al., 2021) adapting this principle for deriving 

boundary conditions in thin plate theory, but for the setup in which 
the end forces applied have the resultants of the same amplitude 
but different direction. A low-frequency analysis of a viscoelastic 
inhomogeneous bar under the action of end loads, also inspired 
by modeling of railcar dynamics, is considered in (Kaplunov et al., 
2015), and explicit asymptotic corrections to the conventional 
equations of rigid body motion are presented. We also mention 
almost rigid body motions of a system consisting of strongly inho-
mogeneous elastic beams considered in (Şahin, 2019) and (Şahin 
et al., 2020). 

In this paper, we construct a correction to Newton’s second 
law for an elastic rectangle subject to sliding boundary conditions 
in case of low-frequency motion related to a typical time scale that 
is assumed to be much greater than the time elastic waves that 
take the distance between the opposite sides of the rectangle. A 
perturbation scheme developed in terms of a small parameter 
associated with low-frequency is used to obtain a generalized 
formulation for displacements of the elastic rectangle under the 
influence of edge loadings. The asymptotic study of similar 
boundary-value problems, such as response of a semi-infinite 
rectangle to end loadings, usually agree with the Saint-Venant’s 
principle that states that statically self-equilibrated loads cause 
only local disturbances that do not propagate far away from a 
loaded area (see Babenkova and Kaplunov, 2004 and Babenkova 
et al., 2005). 

The paper is organized as follows. In Section 2, the statement 
of in-plane dynamic problem for an elastic rectangle subject to 
sliding boundary conditions is presented. The governing equations 
and scaling of the parameters are given. Section 3 contains a 
perturbation procedure that formulates the problem with the help 
of a small parameter arising from the definition of the low-
frequency of the rectangle. In Section 4, illustrative examples for 
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the developed model are given, and numerical computations 
comparing the exact and approximate formulations are presented. 
Conclusions are given in the last section. 

2. STATEMENT OF THE PROBLEM 

The in-plane dynamic problem for a linear, isotropic elastic 
rectangle under the action of edge loads and subject to sliding 
boundary conditions is considered in the framework of linear 
elasticity, see Fig. 1. 

 
Fig. 1. An elastic rectangle under the considered edge loading and   

sliding support 

In-plane motions of the isotropic rectangle are governed by 
the equations of two-dimensional elasticity: 

𝜎𝑖𝑗,𝑗 = 𝜌𝑢𝑖,𝑡𝑡  ,    𝑖, 𝑗 = 1,2 (1) 

where 𝑢𝑖 are in-plane displacement components, 𝜎𝑖𝑗  are stress 

tensor components, 𝑡 is time, and 𝜌 is mass density. The edge 
loadings and the sliding boundary conditions on the faces of 
rectangle are written, respectively, as: 

𝜎11(±𝑙1, 𝑥2, 𝑡) = 𝑃±,     𝜎12(±𝑙1, 𝑥2, 𝑡) = 0, 
𝜎21(𝑥1, ±𝑙2, 𝑡) = 0,        𝑢2(𝑥1, ±𝑙2, 𝑡) = 0. 

(2) 

It is natural to separate the solution in symmetric and anti-
symmetric parts. For simplicity, we consider only the symmetric 
part whereas the antisymmetric part may be investigated similarly. 

Therefore, it is assumed that 𝑃± = 𝑃±(𝑥2, 𝑡) are even in 𝑥2. 
The constitutive equations relating the stress and displacement 
components are expressed through: 

𝜎𝑖𝑖 =
𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
 𝑢𝑖,𝑖 +

𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
𝑢𝑗,𝑗, 

𝜎𝑖𝑗 =
𝐸

2(1 + 𝜈)
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),    𝑖 ≠ 𝑗 = 1,2. 

  (3) 

where 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio. 
Our main concern is the low-frequency motions of the rectan-

gle under plane strain conditions that suggest introducing the 

small parameter 𝜂 defined by: 

𝜂 =
𝑙1

𝑇𝑐2

≪ 1, (4) 

and rescaling the problem in the nondimensional quantities intro-
duced in the form: 

𝜎𝑖𝑗
∗ =

𝜎𝑖𝑗

𝜂2𝜌 𝑐2
2 ,    𝑢𝑖

∗ =
𝑢𝑖

𝑙1

,     𝑃∗
± =

𝑃±

𝜂2𝜌 𝑐2
2 , 

𝑦𝑖 =
𝑥𝑖

𝑙𝑖

,    𝜏 =
𝑡

𝑇
,    𝑖, 𝑗 = 1,2. 

  (5) 

Here, c2 = √E/2ρ(1 + ν) denotes the transverse wave speed 

and T is a typical time scale grater than the longitudinal and 
transverse waves to propagate the distance equal to the thickness 
of the body. 

Formulae (1) and (3) may, therefore, be rewritten as:  

𝜎11,1
∗ + 𝛿𝜎12,2

∗ = 𝑢1,𝜏𝜏
∗ , 

𝜎12,1
∗ + 𝛿𝜎22,2

∗ = 𝑢2,𝜏𝜏
∗ , 

  (6) 

and: 

𝜂2𝜎11
∗ = 𝜅2 𝑢1,1

∗ + 𝛿 (𝜅2 − 2)𝑢2,2
∗ , 

𝜂2𝜎12
∗ = 𝛿 𝑢1,2

∗ + 𝑢2,1
∗ , 

𝜂2𝜎22
∗ = 𝛿 𝜅2 𝑢2,2

∗ + (𝜅2 − 2) 𝑢1,1
∗  

  (7) 

where 𝛿 = 𝑙1/𝑙2 and 𝜅2 = 2(1 − 𝜈)/(1 − 2𝜈). 

3. PERTURBATION PROCEDURE 

We seek the solution {𝑢𝑖 , 𝜎𝑖𝑗} of the boundary-value prob-

lems (6) to (7) in the form of the following asymptotic series: 

𝑢𝑖
∗ = 𝑢𝑖

(0)
+ 𝜂2𝑢𝑖

(1)
+ ⋯, 

𝜎𝑖𝑖
∗ = 𝜎𝑖𝑖

(0)
+ 𝜂2𝜎𝑖𝑖

(1)
+ ⋯, 

𝜎𝑖𝑗
∗ = 𝜎𝑖𝑗

(0)
+ 𝜂2𝜎𝑖𝑗

(1)
+ ⋯ ,    𝑖 ≠ 𝑗 = 1,2. 

(8) 

       On substituting expansions (8) into the governing equations 
(6) and the constitutive relations (7), the leading order displace-
ments, that is the first components in expansions (8) independent 
of the powers of 𝜂 are governed by the boundary-value problem 
given by:  

𝜎11,1
(0)

+ 𝛿𝜎12,2
(0)

= 𝑢1,𝜏𝜏
(0)

, 

𝜎12,1
(0)

+ 𝛿𝜎22,2
(0)

= 𝑢2,𝜏𝜏
(0)

, 
(9) 

with:  

𝜅2 𝑢1,1
(0)

+ 𝛿 (𝜅2 − 2) 𝑢2,2
(0)

= 0, 

𝛿 𝑢1,2
(0)

+ 𝑢2,1
(0)

= 0, 

𝛿 𝜅2 𝑢2,2
(0)

+ (𝜅2 − 2) 𝑢1,1
(0)

= 0, 

(10) 

and: 

𝜎11
(0)

|
𝑦1=±1

= 𝑃∗
±, 𝜎12

(0)
|

𝑦1=±1
= 0 

𝜎21
(0)

|
𝑦2=±1

= 0,             𝑢2
(0)

|
𝑦2=±1

= 0. 
(11) 

Eqns. (101) and (103) yield that: 

𝑢𝑖,𝑖
(0)

= 0,    𝑖 = 1,2 (12) 

resulting in: 

𝑢1
(0)

= 𝑢1
(0)

(𝑦2 , 𝜏),    𝑢2
(0)

= 𝑢2
(0)

(𝑦1, 𝜏). (13) 

     Substituting (13) into the second equation of (10) gives the 
final form of the leading order displacements, that is:  

𝑢𝑖
(0)

= 𝑈𝑖(𝜏),    𝑖 = 1,2. (14) 

Due to boundary condition (103), the second component of 
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leading order displacement vanishes, i.e., 

𝑢2
(0)

= 0. (15) 

Thus, equations (91) and (92) become: 

𝜎11,1
(0)

+ 𝛿𝜎12,2
(0)

= 𝑈1,𝜏𝜏 , 

𝜎12,1
(0)

+ 𝛿𝜎22,2
(0)

= 0. 
(16) 

Integrating (161) over the rectangular region we derive, em-
ploying boundary conditions (11): 

∫ ∫
𝜕𝜎11

(0)

𝜕𝑦1

𝑑𝑦1𝑑𝑦2

1

−1

1

−1

+ 𝛿 ∫ ∫
𝜕𝜎12

(0)

𝜕𝑦2

𝑑𝑦2𝑑𝑦1 =

1

−1

1

−1

 

= ∫ (𝜎11
(0)

|
𝑦1=1

− 𝜎11
(0)

|
𝑦1=−1

) 𝑑𝑦2

1

−1

 

+𝛿 ∫ (𝜎12
(0)

|
𝑦2=1

− 𝜎12
(0)

|
𝑦2=−1

) 𝑑𝑦1

1

−1

 

= ∫(𝑃∗
+ − 𝑃∗

−)𝑑𝑦2 = 4𝑈1,𝜏𝜏 .

1

−1

 

(17) 

We, therefore, have at leading order: 

𝑢1,𝜏𝜏
(0)

=
1

4
∫(𝑃∗

+ − 𝑃∗
−)𝑑𝑦2

1

−1

 (18) 

which is in agreement with Newton’s second law:  

𝑚 𝑢1,𝜏𝜏 =
1

4
∫(P+ − P−)𝑑𝑥2

𝑙2

−𝑙2

 (19) 

where 𝑚 = 𝑙1𝑙2𝜌, see (Kaplunov and Şahin, 2020). 
Next order boundary-value problem may be expressed 

through the pseudo-static equations given by:  

𝜅2
𝜕2𝑢1

(1)

𝜕𝑦1
2 + 𝛿2

𝜕2𝑢1
(1)

𝜕𝑦2
2 + 𝛿(𝜅2 − 1)

𝜕2𝑢2
(1)

𝜕𝑦1𝜕𝑦2

= 𝑢1,𝜏𝜏,
(0)

 

𝛿2𝜅2
𝜕2𝑢2

(1)

𝜕𝑦2
2 +

𝜕2𝑢2
(1)

𝜕𝑦1
2 + 𝛿(𝜅2 − 1)

𝜕2𝑢1
(1)

𝜕𝑦1𝜕𝑦2

= 0 

(20) 

with: 

𝜅2 𝑢1,1
(1)

+ 𝛿 (𝜅2 − 2)𝑢2,2
(1)

|
𝑦1=±1

= 𝑃∗
±, 

𝛿 𝑢1,2
(1)

+ 𝑢2,1
(1)

|
𝑦1=±1

= 0, 

𝛿 𝑢1,2
(1)

+ 𝑢2,1
(1)

|
𝑦2=±1

= 0, 

𝑢2
(1)

|
𝑦2=±1

= 0.  

(21) 

Let us consider solutions of eqn. (20) in the form: 

𝑢1
(1)

= 𝑋10(𝑦1) + ∑ 𝑋1𝑛(𝑦1)cos𝑛𝜋𝑦2,

∞

𝑛=1

   (22) 

𝑢2
(1)

= ∑ 𝑋2𝑛(𝑦1)sin𝑛𝜋𝑦2 .

∞

𝑛=1

 

       Substituting the assumed form of the next order displace-
ments (22) into the governing equations (20) yield:  

𝜅2 (𝑋10
′′ + ∑  

∞

𝑛=1

𝑋1𝑛
′′ cos𝑛𝜋𝑦2) − 

−𝛿2 ∑(𝑛𝜋)2𝑋1𝑛cos𝑛𝜋𝑦2 +

∞

𝑛=1

 

+δ(κ2 − 1) ∑(𝑛𝜋)𝑋2𝑛
′ cos𝑛𝜋𝑦2 =

∞

𝑛=1

 

=
𝑎0

2
+ ∑ 𝑎𝑛cos𝑛𝜋𝑦2 + 𝑏𝑛cos𝑛𝜋𝑦2,

∞

𝑛=1

 

  (23) 

and: 

−𝛿2𝜅2 ∑(𝑛𝜋)2𝑋2𝑛𝑠𝑖𝑛𝑛𝜋𝑦2 +

∞

𝑛=1

 

+ ∑ 𝑋2𝑛
′′ 𝑠𝑖𝑛𝑛𝜋𝑦2 −

∞

𝑛=1

 

−δ(κ2 − 1) ∑(𝑛𝜋)𝑋1𝑛
′ 𝑠𝑖𝑛𝑛𝜋𝑦2 = 0

∞

𝑛=1

 

  (24) 

where:  

a0 = ∫ 𝑝 𝑑𝑦2 = 2𝑝,

1

−1

 

a𝑛 = ∫ 𝑝 cos𝑛𝜋𝑦2 𝑑𝑦2,

1

−1

 

𝑏𝑛 = ∫ 𝑝 𝑠𝑖𝑛𝑛𝜋𝑦2 𝑑𝑦2 ,

1

−1

 

(25) 

with: 

𝑝 =
1

4
∫(𝑃∗

+ − 𝑃∗
−)𝑑𝑦2

1

−1

 (26) 

which is a constant function. Equations (23) and (24) may be 
reduced, on using (25) and (26), to the differential equations: 

𝜅2𝑋10
′′ =

𝑎0

2
= 𝑝 (27) 

and:  

𝜅2𝑋1𝑛
′′ − 𝛿2(𝑛𝜋)2𝑋1𝑛 + 𝛿(𝜅2 − 1)(𝑛𝜋)𝑋2𝑛

′ = 0, 

−𝛿2𝜅2(𝑛𝜋)2𝑋2𝑛 + 𝑋2𝑛
′′ − 𝛿(𝜅2 − 1)(𝑛𝜋)𝑋1𝑛

′ = 0, 
 (28) 

where the term-wise equality of Fourier series is utilized. 
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The solution of eqn. (27) may clearly be written as:  

𝑋10 =
𝑝

𝜅2
𝐴10𝑦1

2 + 𝐴20𝑦1 + 𝐴30. 
    

(29) 

      It can also be seen from (281) that:  

𝑋2𝑛′ = −
𝜅2

𝛿(𝜅2 − 1)(𝑛𝜋)
𝑋1𝑛′′ +

𝛿2(𝑛𝜋)2

𝛿(𝜅2 − 1)(𝑛𝜋)
𝑋1𝑛. (30) 

Taking the derivative of (282) with respect to 𝑦1 and using 
(30) we obtain: 

𝑋1𝑛
(iv)

− 2(𝛿𝑛𝜋)2𝑋1𝑛′′ + (𝛿𝑛𝜋)4𝑋1𝑛 = 0 (31) 

      The solution of which may be written as:  

𝑋1𝑛 = (𝐴1 + 𝛿𝑛𝜋𝑦1𝐴2)sinh𝛿𝑛𝜋𝑦1 + 

           +(𝐴3 + 𝛿𝑛𝜋𝑦1𝐴4)cosh𝛿𝑛𝜋𝑦1. 
(32) 

       Substituting (32) into the differential relation (30) results in: 

𝑋2𝑛
′ = −𝛿𝑛𝜋sinh(𝛿𝑛𝜋𝑦1)𝐴1 − 𝛿𝑛𝜋cosh(𝛿𝑛𝜋𝑦1)𝐴3 − 

−
𝛿𝑛𝜋(2𝜅2cosh(𝛿𝑛𝜋𝑦1) + 𝛿𝑛𝜋𝑦1(𝜅2 − 1)sinh(𝛿𝑛𝜋𝑦1))

𝜅2 − 1
𝐴2 

 

−
𝛿𝑛𝜋(2𝜅2sinh(𝛿𝑛𝜋𝑦1) + 𝛿𝑛𝜋𝑦1(𝜅2 − 1)cosh(𝛿𝑛𝜋𝑦1))

𝜅2 − 1
𝐴4  

which yields: 

𝑋2𝑛 = −cosh(𝛿𝑛𝜋𝑦1)𝐴1 − sinh(𝛿𝑛𝜋𝑦1)𝐴3 − 

− (𝛿𝑛𝜋𝑦1 cosh(𝛿𝑛𝜋𝑦1)

+
(𝜅2 + 1) sinh(𝛿𝑛𝜋𝑦1)

𝜅2 − 1
) 𝐴2 − 

(33) 

− (𝛿𝑛𝜋𝑦1sinh(𝛿𝑛𝜋𝑦1)

+
(𝜅2 + 1)cosh(𝛿𝑛𝜋𝑦1)

𝜅2 − 1
) 𝐴4. 

 

        The displacements may consequently be written as:  

𝑢1
(1)

=
𝑝

𝜅2
𝐴10𝑦1

2 + 𝐴20𝑦1 + 𝐴30 + 

        + ∑{(𝐴1 + 𝛿𝑛𝜋𝑦1𝐴2)sinh𝛿𝑛𝜋𝑦1

∞

𝑛=1

+ 

        +(𝐴3 + 𝛿𝑛𝜋𝑦1𝐴4)cosh𝛿𝑛𝜋𝑦1}cos𝑛𝜋𝑦2 

(34) 

and: 

𝑢2
(1)

= ∑ −cosh(𝛿𝑛𝜋𝑦1)𝐴1 − sinh(𝛿𝑛𝜋𝑦1)𝐴3

∞

𝑛=1

− 

− (𝛿𝑛𝜋𝑦1cosh(𝛿𝑛𝜋𝑦1) +
(𝜅2+1)sinh(𝛿𝑛𝜋𝑦1)

𝜅2−1
) 𝐴2- 

− (𝛿𝑛𝜋𝑦1sinh(𝛿𝑛𝜋𝑦1) +

       +
(𝜅2+1) cosh(𝛿𝑛𝜋𝑦1)

𝜅2−1
) 𝐴4} sin𝑛𝜋𝑦2.  

(35) 

 

 

 

      Boundary condition (21) may be written as:  

𝜅2 𝑢1,1
(1)

+ 𝛿 (𝜅2 − 2) 𝑢2,2
(1)

|
𝑦1=±1

=
𝐵0

±

2
+ 

+ ∑ 𝐵𝑛
±cos𝑛𝜋𝑦2 + 𝐶𝑛

±sin𝑛𝜋𝑦2,

∞

𝑛=1

 

𝛿 𝑢1,2
(1)

+ 𝑢2,1
(1)

|
𝑦1=±1

= 0, 

𝛿 𝑢1,2
(1)

+ 𝑢2,1
(1)

|
𝑦2=±1

= 0, 

𝑢2
(1)

|
𝑦2=±1

= 0 

 (36) 

where: 

𝐵0
± = ∫ 𝑃∗

±𝑑𝑦2,

1

−1

 

𝐵𝑛
± = ∫ 𝑃∗

± cos𝑛𝜋𝑦2 𝑑𝑦2

1

−1

, 

𝐶𝑛
± = ∫ 𝑃∗

± sin𝑛𝜋𝑦2 𝑑𝑦2 .

1

−1

 

(37) 

On employing, the displacements (34) and (35) in the bounda-
ry conditions (36) yield, respectively, the following equations for 

𝑋10, 𝑋1 and 𝑋2: 

𝜅2  
𝜕𝑋10

𝜕𝑦1

|
𝑦1=±1

=
1

2
∫ 𝑃∗

±𝑑𝑦2

1

−1

 (38) 

and: 

𝜅2 ∑ 𝑋1𝑛
′ (𝑦1)cos𝑛𝜋𝑦2

∞

𝑛=1

+ 

+𝛿(𝜅2 − 2)𝑛𝜋 ∑𝑋2𝑛(𝑦1)cos𝑛𝜋𝑦2|𝑦1=±1

∞

𝑛=1

= 

= ∑ 𝐵𝑛
±cos𝑛𝜋𝑦2 + 𝐶𝑛

±sin𝑛𝜋𝑦2,

∞

𝑛=1

 

−𝛿𝜅2𝑛𝜋 ∑ 𝑋1𝑛(𝑦1)sin𝑛𝜋𝑦2

∞

𝑛=1

+ 

+ ∑𝑋2𝑛
′ (𝑦1)sin𝑛𝜋𝑦2|𝑦1=±1 = 0

∞

𝑛=1

 

 (39) 

resulting in: 

𝜅2𝑋1𝑛
′ (𝑦1) + 𝛿 (𝜅2 − 2)𝑛𝜋𝑋2𝑛(𝑦1)|𝑦1=±1

= ∫ 𝑃∗
± cos𝑛𝜋𝑦2 𝑑𝑦2

1

−1

, 

−𝛿 𝜅2𝑛𝜋𝑋1𝑛(𝑦1) + 𝑋2𝑛′(𝑦1)|𝑦1=±1 = 0. 

(40) 

All coefficients appearing in the displacements 𝑢1
(1)

 and 𝑢2
(1)

, 

see (34) and (56), may be calculated substituting expressions 
(29), (32) and (33) into equation (40), which gives: 

𝐴10 =
1

2
, (41) 
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𝐴20 =
1

4𝜅2
∫(𝑃∗

+ + 𝑃∗
−)𝑑𝑦2,

1

−1

 

and: 

𝐴1 =
cosh(𝛿𝑛𝜋)(𝛿𝑛𝜋(𝜅2 − 1) + 𝜅2tanh(𝛿𝑛𝜋))

2𝛿𝑛𝜋(𝜅2 − 1)(2𝛿𝑛𝜋 + sinh(2𝛿𝑛𝜋))
𝐼1, 

𝐴2 =
cosh(𝛿𝑛𝜋)

2𝛿𝑛𝜋(2𝛿𝑛𝜋 − sinh(2𝛿𝑛𝜋))
  𝐼2, 

𝐴3

= −
cosh(𝛿𝑛𝜋) (𝜅2 + 𝛿𝑛𝜋(𝜅2 − 1) tanh(𝛿𝑛𝜋))

2𝛿𝑛𝜋(𝜅2 − 1)(2𝛿𝑛𝜋 − sinh(2𝛿𝑛𝜋))
  𝐼2, 

𝐴4 = −
sinh(𝛿𝑛𝜋)

2𝛿𝑛𝜋(2𝛿𝑛𝜋 + sinh(2𝛿𝑛𝜋))
  𝐼1, 

(42) 

where: 

I1 = ∫(𝑃∗
+ + 𝑃∗

−) cos𝑛𝜋𝑦2 𝑑𝑦2

1

−1

, 

I2 = ∫(𝑃∗
+ − 𝑃∗

−) cos𝑛𝜋𝑦2 𝑑𝑦2

1

−1

. 

(43) 

A higher order approximation is still needed to determine the 
coefficient 𝐴30. To this end, starting from (6) and (34), we write: 

𝜎11,1
(1)

+ 𝛿𝜎12,2
(1)

= 𝑢1,𝜏𝜏
(1)

 (44) 

with: 

𝜎11
(1)

|
𝑦1=±1

= 𝜎12
(1)

|
𝑦2=±1

= 0. (45) 

Integrating equation (44) over the rectangular region and us-
ing boundary condition (45), we obtain: 

𝐴30 = −
𝑝

6𝜅2
. (46) 

Thus, the expressions for the next order displacements 𝑢1
(1)

 

and 𝑢2
(1)

 are fully established. The following section aims to pre-

sent demonstrative examples. 

4. ILLUSTRATIVE EXAMPLES 

4.1.  Time-Harmonic Loadings of Parabolic Types 

First, we consider time-harmonic, parabolic type end loadings 
given by:  

𝑃± = 𝑀±(1 − 𝑥2
2/𝑙2

2)𝑒−𝑖𝜔𝑡  (47) 

where 𝑀± is a constant amplitude. Below, we utilize the scaling 

introduced in (5) and also omit the time-harmonic factor 𝑒−𝑖𝜔𝑡 . It 
is, therefore, an easy matter to obtain the tangential displacement 
using (18), which is:  

𝑢1
(0)

= −
𝑀∗

+ − 𝑀∗
−

3
 (48) 

where 𝑀∗
± is scaled as in (5). 

The solution of the next order problem may be written from 
eqns. (34) and (35) as: 

𝑢1
(1)

=
𝑀∗

+ − 𝑀∗
−

6𝜅2
𝑦1

2 +
𝑀∗

+ + 𝑀∗
−

3𝜅2
𝑦1 −

𝑀∗
+ − 𝑀∗

−

18𝜅2
+ 

+ ∑{(𝐷1 + 𝛿𝑛𝜋𝑦1𝐷2)sinh𝛿𝑛𝜋𝑦1 +

∞

𝑛=1

 

+(𝐷3 + 𝛿𝑛𝜋𝑦1𝐷4)cosh𝛿𝑛𝜋𝑦1}cos𝑛𝜋𝑦2 

(49) 

and: 

𝑢2
(1)

= ∑{−cosh(𝛿𝑛𝜋𝑦1)𝐷1 − sinh(𝛿𝑛𝜋𝑦1)𝐷3 −

∞

𝑛=1

 

− (𝛿𝑛𝜋𝑦1cosh(𝛿𝑛𝜋𝑦1) +
(𝜅2+1)sinh(𝛿𝑛𝜋𝑦1)

𝜅2−1
) 𝐷2- 

       − (𝛿𝑛𝜋𝑦1sinh(𝛿𝑛𝜋𝑦1)  

+
(𝜅2 + 1)cosh(𝛿𝑛𝜋𝑦1)

𝜅2 − 1
) 𝐷4} sin𝑛𝜋𝑦2 

(50) 

where: 

𝐷1 =
(−1)𝑛+12(𝑀∗

+ + 𝑀∗
−)cosh(𝛿𝑛𝜋)

𝛿𝑛3𝜋3(𝜅2 − 1)(2𝛿𝑛𝜋 + sinh(2𝛿𝑛𝜋))
× 

    × (𝛿𝑛𝜋(𝜅2 − 1) + 𝜅2tanh(𝛿𝑛𝜋)), 

𝐷2 =
(−1)𝑛+12(𝑀∗

+ − 𝑀∗
−) cosh(𝛿𝑛𝜋)),

𝛿𝑛3𝜋3(2𝛿𝑛𝜋 − sinh(2𝛿𝑛𝜋))
 

𝐷3 =
(−1)𝑛2(𝑀∗

+ − 𝑀∗
−) cosh(𝛿𝑛𝜋))

𝛿𝑛3𝜋3(𝜅2 − 1)(2𝛿𝑛𝜋 − sinh(2𝛿𝑛𝜋))
× 

           × (𝜅2 + 𝛿𝑛𝜋(𝜅2 − 1)tanh(𝛿𝑛𝜋)), 

𝐷4 =
(−1)𝑛2(𝑀∗

+ + 𝑀∗
−)sinh(𝛿𝑛𝜋)

𝛿𝑛3𝜋3(2𝛿𝑛𝜋 + sinh(2𝛿𝑛𝜋))
. 

(51) 

In the following figures, we illustrate the comparisons of ap-
proximate and exact longitudinal displacement 𝑢1 given, respec-
tively, by formulas (49) and (60). Here, we set the Poisson ratio 
𝜈 = 0.25 together with 𝛿 = 1. Figures 2 and 3 illustrate the 
behavior of the approximate and exact displacement component 

𝑢1 along the longitudinal coordinate 𝑦1 under the action of self-
equilibrated and non-self-equilibrated loads, that is, we take 
𝑀∗

+ = 𝑀∗
− = 1 and 𝑀∗

+ = −𝑀∗
− = 1, respectively. An excel-

lent agreement is evident for the parameter 𝜂, even when its 
value is not very small. 

In both of these figures, we consider only positive 𝑦2-values 
due to the intrinsic symmetry. The largest displacements occur 
along the 𝑦1-axis, while they decrease in the 𝑦2-direction due to 
the form of the applied loads. However, for a self-equilibrated 

load, Fig. 2, there is no displacement along the 𝑦2-axis, i.e., at 
𝑦1 = 0, which is not observed in the case of a non-self-
equilibrated load, see Fig 3.  
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Fig. 2. Comparison of exact (solid lines) and approximate (dotted lines) 

displacements 𝑢1 versus 𝑦1 for 𝑦2 = 0 (black), 𝑦2 = 0.5 (red), 

and 𝑦2 = 1 (blue) in case of a self-equilibrated load at 𝜂 = 0.5 

 

Fig. 3. Comparison of exact (solid lines) and approximate (dotted lines) 
displacements 𝑢1 versus 𝑦1 for 𝑦2 = 0 (black), 𝑦2 = 0.5 (red), 

and 𝑦2 = 1 (blue) in case of a non-self-equilibrated load at 

𝜂 = 0.5 

 
Fig. 4. Comparison of exact (solid lines) and approximate (dotted lines) 

displacements 𝑢1 versus 𝜂 for 𝑦1 = 𝑦2 = 0.5 (black), 𝑦1 = 1, 

𝑦2 = 0.5 (red), and 𝑦1 = 1, 𝑦2 = 0 (blue) in case of a self-

equilibrated load 

 
Fig. 5. Comparison of exact (solid lines) and approximate (dotted lines) 

displacements 𝑢1 versus 𝜂 for 𝑦1 = 𝑦2 = 0.5 (black), 𝑦1 = 1, 

𝑦2 = 0.5 (red), and 𝑦1 = 1, 𝑦2 = 0 (blue) in case of a non-self-

equilibrated load 

Figures 4 and 5 demonstrate the variations of the longitudinal 
displacement with respect to the small frequency 𝜂 in case of self- 
and non-self-equilibrated loads, respectively. A remarkable coin-
cidence between the approximate and exact displacements is 
observed even in the global low-frequency regime. When the load 
is self-equilibrated, we observe from Fig. 4 that at very low fre-

quencies the horizontal displacement 𝑢1 acquires considerably 
small values both along the 𝑦1-axis (𝑦2 = 0) as well as in the 
vertical direction. As the frequency increases, the horizontal dis-
placement attains larger values that also increase in the positive 
vertical direction. For a non-self-equilibrated load, the displace-
ments for the considered points are not small even for low-
frequency regime. The displacement characteristics are also quite 
different than the previous case, clearly a result of non-self-
equilibrated loading. 

4.1. Time-Harmonic Uniform Loading 

We now consider time-harmonic, uniform end loadings in the 
form:  

𝑃± = 𝐴±𝑒−𝑖𝜔𝑡  (52) 

where 𝐴± are again assumed to be constants. On using eqn. (18) 

and omitting 𝑒−𝑖𝜔𝑡, the leading order displacement may be ob-
tained as: 

𝑢1
(0)

= −
𝐴∗

+ − 𝐴∗
−

2
. (53) 

     Similar to previous section, the next order solution for the 
displacement components may be written as   
     On substituting expansions (8) into the governing equations (6) 
and the constitutive relations (7), the leading order displacements, 
that:  

𝑢1
(1)

=
𝐴∗

+ − 𝐴∗
−

4𝜅2
𝑦1

2 +
𝐴∗

+ + 𝐴∗
−

2𝜅2
𝑦1 −

𝐴∗
+ − 𝐴∗

−

12𝜅2
, (54) 

and: 

𝑢2
(1)

= 0 (55) 

since each coefficient given in (43) becomes zero. 
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Fig. 6. Comparison of exact (solid lines) and approximate (dotted lines) 

displacements 𝑢1 versus 𝑦1 in case of a self-equilibrated load at 

𝜂 = 0.75 

 
Fig. 7. Comparison of exact (solid lines) and approximate (dotted lines) 

displacements 𝑢1 versus 𝜂 for 𝑦1 = 0.25 (black), 𝑦1 = 0.5 (red), 

and 𝑦1 = 1(blue) in case of a self-equilibrated load 

 

Fig. 8. Comparison of exact (solid lines) and approximate (dotted lines) 
displacements 𝑢1 vs 𝜂 for 𝑦1 = 0.25 (black), 𝑦1 = 0.5 (red), and 

𝑦1 = 1(blue) in case of a non-self-equilibrated load 

The effect of a non-self-equilibrated uniform loading on the 

horizontal displacement along the 𝑦1-axis is displayed both for 
approximate and exact formulations in Fig. 6. An apparent para-
bolic form emerges with the largest displacement arising along the 
center of the rectangle. 

Figures 7 and 8 exhibit the same characteristics as their coun-
terparts for parabolic loading. For a fixed value of the frequency, 
the displacements grow larger as we move to the edges of the 
rectangle. The displacements are positive for a self-equilibrated 
load, see Fig. 7, and they are negative for a non-self-equilibrated 
load, see Fig. 8. We also note that, as in the case of parabolic 
loading, the accuracy of approximate formulation is significant, 
which are displayed against the exact formulation in Figs. 6–8.  

5. CONCLUSIONS 

A perturbation scheme is implemented to calculate the first 
order low-frequency corrections to rigid body motions of an elastic 
rectangle subject to longitudinal forces applied to its opposite 
faces together with sliding boundary conditions on its upper and 
lower faces. The leading order solution of the nonhomogeneous 
harmonic equation corresponds to Newton’s second law whereas 
the next order terms results in a nonhomogeneous biharmonic 
equation. A similar problem was considered in (Kaplunov and 
Şahin, 2020); however, the boundary conditions allowed explicit 
solutions only in the antiplane case and further assumptions had 
to be imposed in the case of in-plane motions. The sliding bound-
ary considered in this paper, fortunately, allows the variables to be 
separated resulting in the derivation of an explicit approximate 
solution for the in-plane displacements of the rectangle. The 
solution of the next order problem, namely, the nonhomogeneous 
biharmonic equation, leads to a correction to the classical rigid 
body dynamics, see eqns. (35) and (36). The obtained corrections 
to rigid body motions in the low-frequency regime under the action 
of both self- and non-self-equilibrated loads allow the calculation 
of the variation of stress and displacement components over the 
interior of the rectangle. Several figures are presented displaying 
the variation of displacement components for the derived approx-
imate model along with their exact counterparts. An excellent 
coincidence between the asymptotic and exact results is observed 

for a rather large interval of the small parameter 𝜂 in all figures. It 
should also be noted that the case of self-equilibrated loading 
cannot be treated within the classical rigid body model. 

The perturbation approach may also be extended to investi-
gate the dynamic response of strongly inhomogeneous layered 
rectangular structures, see (Prikazchikova et al., 2020), with inner 
and/or outer sliding boundaries, including anisotropy; multi-span 
rectangles with contrasting material properties may also be inves-
tigated. It is also possible to consider a set of arbitrary stresses 
applied to opposing sides of the rectangle. The nonlinear struc-
tures might also be another promising research area for which the 
developed model may be employed. In addition, various problems 
of multi-body dynamics, including calculation of longitudinal forces 
in railcar dynamics might be taken into account.  

APPENDIX. EXACT SOLUTION 

In this section, we present the exact solutions of the longitudi-
nal and transverse displacements of the elastic rectangle subject 
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to time-harmonic parabolic and uniform type end loadings. First, 
we derive the formulations for the parabolic type end loading. 

The equations of motion and boundary conditions given in (1) 
and (2) can be written in terms of the displacement components, 
respectively, as:  

𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)

𝜕2𝑢1

𝜕𝑥1
2 +

𝐸

2(1 + 𝜈)

𝜕2𝑢1

𝜕𝑥2
2 + 

    +
𝐸(1 − 𝜈)

2(1 + 𝜈)(1 − 2𝜈)

𝜕2𝑢2

𝜕𝑥1𝜕𝑥2

= 𝜌
𝜕2𝑢1

𝜕𝑡2
, 

𝐸

2(1 + 𝜈)

𝜕2𝑢2

𝜕𝑥1
2 +

𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)

𝜕2𝑢2

𝜕𝑥2
2 + 

    +
𝐸(1 − 𝜈)

2(1 + 𝜈)(1 − 2𝜈)

𝜕2𝑢1

𝜕𝑥1𝜕𝑥2

= 𝜌
𝜕2𝑢2

𝜕𝑡2
, 

(56) 

and: 

𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)

𝜕𝑢1

𝜕𝑥1

+
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)

𝜕𝑢2

𝜕𝑥2

|
𝑥1=±𝑙1

= 

    = 𝑀± (1 −
𝑥2

2

𝑙2
2 ) 𝑒−𝑖𝜔𝑡 , 

𝜕𝑢1

𝜕𝑥2

+
𝜕𝑢2

𝜕𝑥1

|
𝑥1=±𝑙1

= 0, 

𝜕𝑢1

𝜕𝑥2

+
𝜕𝑢2

𝜕𝑥1

|
𝑥2=±𝑙2

= 0, 

𝑢2|𝑥2=±𝑙2
. 

(57) 

      Considering time-harmonic vibrations together with scaled 
quantities introduced in (5), the boundary-value problem (56) and 
(57) may be rewritten as:  

𝜅2
𝜕2𝑢1

∗

𝜕𝑦1
2 + 𝛿2

𝜕2𝑢1
∗

𝜕𝑦2
2 + 𝛿(𝜅2 − 1)

𝜕2𝑢2
∗

𝜕𝑦1𝜕𝑦2

+ 𝜂2𝑢1
∗ , 

𝜕2𝑢2
∗

𝜕𝑦1
2 + 𝛿2𝜅2

𝜕2𝑢2
∗

𝜕𝑦2
2 + 𝛿(𝜅2 − 1)

𝜕2𝑢1
∗

𝜕𝑦1𝜕𝑦2

+ 𝜂2𝑢2
∗ , 

(58) 

with: 

𝜅2
𝜕𝑢1

∗

𝜕𝑦1

+ 𝛿(𝜅2 − 2)
𝜕𝑢2

∗

𝜕𝑦2

|
𝑦1=±1

= 𝜂2𝑀∗
±(1 − 𝑦2

2), 

𝛿
𝜕𝑢1

∗

𝜕𝑦2

+
𝜕𝑢2

∗

𝜕𝑦1

|
𝑦1=±1

= 0, 

𝛿
𝜕𝑢1

∗

𝜕𝑦2

+
𝜕𝑢2

∗

𝜕𝑦1

|
𝑦2=±1

= 0, 

𝑢2
∗|𝑦2=±1 

(59) 

where 𝜂 = 𝜔𝑙1/𝑐2. 
Let us assume the solutions of (58) are in the form: 

𝑢1
∗ = 𝑢10

∗ + ∑  

∞

𝑛=1

𝑢1𝑛
∗ (𝑦1)cos𝑛𝜋𝑦2 , (60) 

𝑢2
∗ = ∑  

∞

𝑛=1

𝑢2𝑛
∗ (𝑦1)cos𝑛𝜋𝑦2, 

see (Kaplunov et al., 2005). Substituting equations (60) into the 
governing equations and boundary conditions given by (58) and 
(59) and employing a straightforward but a lengthy algebra we 
arrive at, omitting all the details: 

𝑢10
∗ = −

𝑀∗
+ − 𝑀∗

−

3𝜅sin
𝜂
𝜅

𝜂cos (
𝜂

𝜅
𝑦1)

+
𝑀∗

+ + 𝑀∗
−

3𝜅cos
𝜂
𝜅

𝜂sin (
𝜂

𝜅
𝑦1), 

𝑢1𝑛
∗ = 𝐸1cosh𝑟1𝑦1 + 𝐸2sinh𝑟1𝑦1 + 𝐸3cosh𝑟2𝑦1

+ 𝐸4sinh𝑟2𝑦1, 

𝑢2𝑛
∗ = −

𝑛𝜋𝛿𝐸1

𝑟1

sinh𝑟1𝑦1 −
𝑛𝜋𝛿𝐸2

𝑟1

cosh𝑟1𝑦1 − 

    −
𝑟2𝐸3

𝑛𝜋𝛿
sinh𝑟2𝑦1 −

𝑟2𝐸4

𝑛𝜋𝛿
cosh𝑟2𝑦1, 

(61) 

where: 𝑟1 = ±√𝛿2𝑛2𝜋2 − 𝜂2/𝜅2, 𝑟2 = ±√𝛿2𝑛2𝜋2 − 𝜂2, 

and 𝐸𝑖 are the Fourier coefficients given by: 

𝐸1 =
2𝜂2(𝑛2𝜋2𝛿2 + 𝑟2

2)𝑟1cosh𝑟2cos𝑛𝜋(𝑀∗
+ − 𝑀∗

−)

4𝑛4𝜋4𝛿2𝑟1𝑟2cosh𝑟1sinh𝑟2 − 𝑛2𝜋2(𝑛2𝜋2𝛿2 + 𝑟2
2)2sinh𝑟1cosh𝑟2

, 

𝐸2 =
2𝜂2(𝑛2𝜋2𝛿2 + 𝑟2

2)𝑟1sinh𝑟2cos𝑛𝜋(𝑀∗
+ + 𝑀∗

−)

4𝑛4𝜋4𝛿2𝑟1𝑟2sinh𝑟1cosh𝑟2 − 𝑛2𝜋2(𝑛2𝜋2𝛿2 + 𝑟2
2)2cosh𝑟1sinh𝑟2

, 

𝐸3 =
−4𝜂2𝛿2𝑟1cosh𝑟1cos𝑛𝜋(𝑀∗

+ − 𝑀∗
−)

4𝑛2𝜋2𝛿2𝑟1𝑟2cosh𝑟1sinh𝑟2 − (𝑛2𝜋2𝛿2 + 𝑟2
2)2sinh𝑟1cosh𝑟2

, 

𝐸4 =
−4𝜂2𝛿2𝑟1sinh𝑟1cos𝑛𝜋(𝑀∗

+ + 𝑀∗
−)

4𝑛2𝜋2𝛿2𝑟1𝑟2sinh𝑟1cosh𝑟2 − (𝑛2𝜋2𝛿2 + 𝑟2
2)2cosh𝑟1sinh𝑟2

. 

(62) 

      The exact solution to the elastic rectangle subject to time-
harmonic uniform loading may also be treated similarly. Therefore, 
leaving out all the algebraic details, the exact formulation for the 
displacement components are given as: 

𝑢1
∗ = −

𝜂(𝐴∗
+ − 𝐴∗

−)

2𝜅sin
𝜂
𝜅

cos
𝜂

𝜅
𝑦1

+
𝜂(𝐴∗

+ + 𝐴∗
−)

2𝜅cos
𝜂
𝜅

sin
𝜂

𝜅
𝑦1, 

𝑢2
∗ = 0. 

(63) 
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