Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Parkinson’s disease (PD) is a neurodegenerative disorder that influence brain’s neurological, behavioral, and physiological functions and includes motor and nonmotor manifestations. Although there have been several PD diagnosis systems with supervised machine learning techniques, there are more efforts that need to enhance the accurate detection of PD in its early stage. The current paper developed a novel approach by integrating Least Squares Support Vector Regression (LS-SVR) and Fuzzy Clustering for Unified Parkinson’s Disease Rating Scale (UPDRS) diagnosis. This paper used feature selection and Principal Component Analysis (PCA) to overcome the multicollinearity issues in data. This paper used a large medical dataset including Motor- and Total-UPDRS to demonstrate how the proposed method can improve prediction performance via extensive evaluations and comparisons with existing methods. Compared to other prediction methods, the experimental results demonstrate that the proposed method provided the best accuracy for Total-UPDRS (Root Mean Squared Error = 0.7348; R2 = 0.9169) and Motor-UPDRS (Root Mean Squared Error = 0.8321; R2 = 0.8756) predictions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
569--585
Opis fizyczny
Bibliogr. 145 poz., rys., tab., wykr.
Twórcy
autor
- Centre for Health Technology, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
autor
- The International College, Guangxi University, Nanning 530000 China
autor
- Health Information Management, School of Nursing and Midwifery, Saveh University of Medical Sciences, Iran
autor
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
autor
- Centre for Health Technology, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
Bibliografia
- [1] Pretegiani E, Optican LM. Eye movements in Parkinson’s disease and inherited parkinsonian syndromes. Front Neurol 2017;8:592.
- [2] Massano J, Bhatia KP. Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harbor Perspect Med 2012;2(6).
- [3] Ali L, Chakraborty C, He Z, Cao W, Imrana Y, Rodrigues JJ. A novel sample and feature dependent ensemble approach for Parkinson’s disease detection. Neural Comput Applic 2023;35(22):15997-6010.
- [4] Dulski J, et al. The impact of subthalamic deep brain stimulation on sleep and other non-motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord 2019;64:138-44.
- [5] Marinus J, Zhu K, Marras C, Aarsland D, van Hilten JJ. Risk factors for non-motor symptoms in Parkinson’s disease. Lancet Neurol 2018;17(6):559-68.
- [6] Guttman M, Kish SJ, Furukawa Y. Current concepts in the diagnosis and management of Parkinson’s disease. CMAJ 2003;168(3):293-301.
- [7] Timmermann L, et al. Ten-Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson’s disease. Movement Disorders 2004;19(11): 1328-33.
- [8] Borrione P, Tranchita E, Sansone P, Parisi A. Effects of physical activity in Parkinson’s disease: A new tool for rehabilitation. World J Methodol 2014;4(3): 133.
- [9] Olanow CW, Watts RL, Koller WC. An algorithm (decision tree) for the management of Parkinson’s disease (2001): Treatment Guidelines. Neurology 2001;56(suppl 5):S1-88.
- [10] Noyce AJ, et al. PREDICT-PD: identifying risk of Parkinson’s disease in the community: methods and baseline results. J Neurol Neurosurg Psychiatry 2014; 85(1):31-7.
- [11] Lauretani F, Maggio M, Silvestrini C, Nardelli A, Saccavini M, Ceda GP. Parkinson’s disease (PD) in the elderly: An example of geriatric syndrome (GS)? Arch Gerontol Geriatr 2012;54(1):242-6.
- [12] Nutt JG, Holford NH. The response to levodopa in Parkinson’s disease: imposing pharmacological law and order. Ann Neurol 1996;39(5):561-73.
- [13] Ayaz Z, Naz S, Khan NH, Razzak I, Imran M. Automated methods for diagnosis of Parkinson’s disease and predicting severity level. Neural Comput Applic 2023;35(20):14499-534.
- [14] Chen F, et al. The long-term trend of Parkinson’s disease incidence and mortality in China and a Bayesian projection from 2020 to 2030. Front Aging Neurosci 2022;14:973310.
- [15] Yang W, et al. Current and projected future economic burden of Parkinson’s disease in the US. npj Parkinson’s Disease 2020;6(1):15.
- [16] Simonet C, et al. Assessment of risk factors and early presentations of Parkinson disease in primary care in a diverse UK population. JAMA Neurol 2022;79(4): 359-69.
- [17] Schmitz S, et al. Prevalence and cost of care for Parkinson’s disease in luxembourg: an analysis of national healthcare insurance data. Pharmacoeconomics-Open 2022:1-10.
- [18] M. D. S. T. F. o. R. S. f. P. s. Disease, The unified Parkinson’s disease rating scale (UPDRS): status and recommendations, Movement Disorders, 18, 7, 738-750, 2003.
- [19] Martínez-Martín P, et al. Unified Parkinson’s disease rating scale characteristics and structure. Mov Disord 1994;9(1):76-83.
- [20] Van Hilten J, Van Der Zwan A, Zwinderman A, Roos R. Rating impairment and disability in Parkinson’s disease: evaluation of the Unified Parkinson’s Disease Rating Scale. Mov Disord 1994;9(1):84-8.
- [21] Das R. A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst Appl 2010;37(2):1568-72.
- [22] Mei J, Desrosiers C, Frasnelli J. Machine learning for the diagnosis of Parkinson’s disease: a review of literature. Front Aging Neurosci 2021;13:633752.
- [23] Shahid AH, Singh MP. A deep learning approach for prediction of Parkinson’s disease progression. Biomed Eng Lett 2020;10:227-39.
- [24] Nilashi M, et al. Accuracy analysis of type-2 fuzzy system in predicting parkinson’s disease using biomedical voice measures. Int J Fuzzy Syst 2024:1-24.
- [25] Abumalloh RA, et al. Parkinson’s disease diagnosis using deep learning: a bibliometric analysis and literature review. Ageing Res Rev 2024:102285.
- [26] Zogaan WA, et al. A combined method of optimized learning vector quantization and neuro-fuzzy techniques for predicting unified Parkinson’s disease rating scale using vocal features. MethodsX 2024;12:102553.
- [27] Rong G, Mendez A, Assi EB, Zhao B, Sawan M. Artificial intelligence in healthcare: review and prediction case studies. Engineering 2020;6(3):291-301.
- [28] Wu J, Roy J, Stewart WF. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Med Care 2010: S106-13.
- [29] Prashanth R, Roy SD. Novel and improved stage estimation in Parkinson’s disease using clinical scales and machine learning. Neurocomputing 2018;305:78-103.
- [30] Saleh S, Cherradi B, El Gannour O, Hamida S, Bouattane O. Predicting patients with Parkinson’s disease using Machine Learning and ensemble voting technique. Multimed Tools Appl 2023.
- [31] Samuel OW, Asogbon GM, Sangaiah AK, Fang P, Li G. An integrated decision support system based on ANN and Fuzzy_AHP for heart failure risk prediction. Expert Syst Appl 2017;68:163-72.
- [32] Yadav RK. PSO-GA based hybrid with Adam Optimization for ANN training with application in medical diagnosis. Cogn Syst Res 2020;64:191-9.
- [33] Liu S, Liu S, Cai W, Pujol S, Kikinis R, Feng D. Early diagnosis of Alzheimer’s disease with deep learning. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE; 2014. p. 1015-8.
- [34] Kumar K, Ghosh R. Parkinson’s disease diagnosis using recurrent neural network based deep learning model by analyzing online handwriting. Multimed Tools Appl 2023.
- [35] Tracy JM, Özkanca Y, Atkins DC, Ghomi RH. Investigating voice as a biomarker: deep phenotyping methods for early detection of Parkinson’s disease. J Biomed Inform 2020;104:103362.
- [36] Aich S, et al. A supervised machine learning approach to detect the on/off state in Parkinson’s disease using wearable based gait signals. Diagnostics 2020;10(6): 421.
- [37] Mall PK, Yadav RK, Rai AK, Narayan V, Srivastava S. Early warning signs of Parkinson’s disease prediction using machine learning technique. J Pharm Negative Results 2022:4784-92.
- [38] Bortone I, et al. Gait analysis and parkinson’s disease: Recent trends on main applications in healthcare. In: Converging Clinical and Engineering Research on Neurorehabilitation III. Pisa, Italy 5: Springer; 2019. p. 1121-5.
- [39] Loconsole C, et al. A comparison between ann and svm classifiers for parkinson’s disease by using a model-free computer-assisted handwriting analysis based on biometric signals. In: 2018 International joint conference on neural networks (IJCNN). IEEE; 2018. p. 1-8.
- [40] Bortone I, et al. A novel approach in combination of 3d gait analysis data for aiding clinical decision-making in patients with Parkinson’s disease. In: Intelligent Computing Theories and Application: 13th International Conference, ICIC 2017, Liverpool, UK, August 7-10, 2017, Proceedings, Part II 13. Springer; 2017. p. 504-14.
- [41] Asgari M, Shafran I. Predicting severity of Parkinson’s disease from speech. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE; 2010. p. 5201-4.
- [42] Yadav G, Kumar Y, Sahoo G. Predication of Parkinson’s disease using data mining methods: A comparative analysis of tree, statistical and support vector machine classifiers 2012. In: National Conference on Computing and Communication Systems. IEEE; 2012. p. 1-8.
- [43] Exarchos TP, et al. Using partial decision trees to predict Parkinson’s symptoms: A new approach for diagnosis and therapy in patients suffering from Parkinson’s disease. Comput Biol Med 2012;42(2):195-204.
- [44] Nilashi M, Ibrahim O, Samad S, Ahmadi H, Shahmoradi L, Akbari E. An analytical method for measuring the Parkinson’s disease progression: A case on a Parkinson’s telemonitoring dataset. Measurement 2019;136:545-57.
- [45] Prince J, De Vos M. A deep learning framework for the remote detection of Parkinson’s disease using smart-phone sensor data. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2018. p. 3144-7.
- [46] Salmanpour MR, Shamsaei M, Rahmim A. Feature selection and machine learning methods for optimal identification and prediction of subtypes in Parkinson’s disease. Comput Methods Programs Biomed 2021;206:106131.
- [47] Balaji E, Brindha D, Elumalai VK, Vikrama R. Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network. Appl Soft Comput 2021;108:107463.
- [48] de Souza RW, et al. Computer-assisted Parkinson’s disease diagnosis using fuzzy optimum-path forest and Restricted Boltzmann Machines. Comput Biol Med 2021;131:104260.
- [49] Kurt I, Ture M, Kurum AT. Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Syst Appl 2008;34(1):366-74.
- [50] Pahuja G, Nagabhushan T. A comparative study of existing machine learning approaches for Parkinson’s disease detection. IETE J Res 2021;67(1):4-14.
- [51] Senturk ZK. Early diagnosis of Parkinson’s disease using machine learning algorithms. Med Hypotheses 2020;138:109603.
- [52] Çimen S, Bolat B. Diagnosis of Parkinson’s disease by using ANN. In: 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC). IEEE; 2016. p. 119-21.
- [53] Cho S-B, Won H-H. Machine learning in DNA microarray analysis for cancer classification. In: Proceedings of the First Asia-Pacific Bioinformatics Conference on Bioinformatics 2003-Volume 19; 2003. p. 189-98.
- [54] Mansfield ER, Helms BP. Detecting multicollinearity. Am Stat 1982;36(3a): 158-60.
- [55] Sun X, Wu J, Lei G, Cai Y, Chen X, Guo Y. Torque modeling of a segmented-rotor SRM using maximum-correntropy-criterion-based LSSVR for torque calculation of EVs. IEEE J Emerg Selected Top Power Electron 2020;9(3):2674-84.
- [56] Little M, McSharry P, Hunter E, Spielman J, Ramig L. Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. NaturePrecedings 2008. 1-1.
- [57] Benba A, Jilbab A, Hammouch A, Sandabad S. Voiceprints analysis using MFCC and SVM for detecting patients with Parkinson’s disease. In: 2015 International conference on electrical and information technologies (ICEIT). IEEE; 2015. p. 300-4.
- [58] Sakar CO, et al. A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform. Appl Soft Comput 2019;74:255-63.
- [59] Yasar A, Saritas I, Sahman M, Cinar A. Classification of Parkinson disease data with artificial neural networks. IOP conference series: materials science and engineering 2019;675. 012031.
- [60] Almeida JS, et al. Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques. Pattern Recogn Lett 2019;125: 55-62.
- [61] Alqahtani EJ, Alshamrani FH, Syed HF, Olatunji SO. Classification of Parkinson’s disease using NNge classification algorithm. In: 2018 21st Saudi Computer Society National Computer Conference (NCC). IEEE; 2018. p. 1-7.
- [62] Avuçlu E, Elen A. Evaluation of train and test performance of machine learning algorithms and Parkinson diagnosis with statistical measurements. Med Biol Eng Compu 2020;58:2775-88.
- [63] Yaman O, Ertam F, Tuncer T. Automated Parkinson’s disease recognition based on statistical pooling method using acoustic features. Med Hypotheses 2020;135: 109483.
- [64] Haq AU, et al. Feature selection based on L1-norm support vector machine and effective recognition system for Parkinson’s disease using voice recordings. IEEE Access 2019;7:37718-34.
- [65] Wu Y, et al. Dysphonic voice pattern analysis of patients in Parkinson’s disease using minimum interclass probability risk feature selection and bagging ensemble learning methods. Comput Mathe Methods Med 2017;2017.
- [66] Peker M. A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and SVM. J Med Syst 2016;40(5):116.
- [67] Montaña D, Campos-Roca Y, Pérez CJ. A Diadochokinesis-based expert system considering articulatory features of plosive consonants for early detection of Parkinson’s disease. Comput Methods Programs Biomed 2018;154:89-97.
- [68] Nilashi M, et al. Remote tracking of Parkinson’s disease progression using ensembles of deep belief network and self-organizing map. Expert Syst Appl 2020; 159:113562.
- [69] Devarajan M, Ravi L. Intelligent cyber-physical system for an efficient detection of Parkinson disease using fog computing. Multimed Tools Appl 2019;78: 32695-719.
- [70] Jatoth C, Neelima E, Mayuri A, Annaluri SR. Effective monitoring and prediction of Parkinson disease in Smart Cities using intelligent health care system. Microprocess Microsyst 2022;92:104547.
- [71] Marar S, Swain D, Hiwarkar V, Motwani N, Awari A. Predicting the occurrence of parkinson’s disease using various classification models. In: 2018 International Conference on Advanced Computation and Telecommunication (ICACAT). IEEE; 2018. p. 1-5.
- [72] Erdogdu Sakar B, Serbes G, Sakar CO. Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson’s disease. PLoS one 2017;12(8): e0182428.
- [73] Zhang L, Qu Y, Jin B, Jing L, Gao Z, Liang Z. An intelligent mobile-enabled system for diagnosing Parkinson disease: development and validation of a speech impairment detection system. JMIR Med Inform 2020;8(9):e18689.
- [74] Sajal MSR, Ehsan MT, Vaidyanathan R, Wang S, Aziz T, Mamun KAA. Telemonitoring Parkinson’s disease using machine learning by combining tremor and voice analysis. Brain Informatics 2020;7(1):1-11.
- [75] Kaur S, Aggarwal H, Rani R. Hyper-parameter optimization of deep learning model for prediction of Parkinson’s disease. Mach Vis Appl 2020;31:1-15.
- [76] Solana-Lavalle G, Galán-Hernández J-C, Rosas-Romero R. Automatic Parkinson disease detection at early stages as a pre-diagnosis tool by using classifiers and a small set of vocal features. Biocybernet Biomed Eng 2020;40(1):505-16.
- [77] Sarankumar R, et al. Severity prediction over Parkinson’s disease prediction by using the deep brooke inception net classifier. Comput Intell Neurosci 2022;2022.
- [78] Bárcenas R, Fuentes-García R, Naranjo L. Mixed kernel SVR addressing Parkinson’s progression from voice features. PLoS one 2022;17(10):e0275721.
- [79] Aich S, Kim H-C, Hui KL, Al-Absi AA, Sain M. A supervised machine learning approach using different feature selection techniques on voice datasets for prediction of Parkinson’s disease. In: 2019 21st International Conference on Advanced Communication Technology (ICACT). IEEE; 2019. p. 1116-21.
- [80] Grover P, Dighe A, Tilak P. Role of Artificial Intelligence in neurorehabilitation of parkinson’s disease-A systematic review, 2022.
- [81] Wanjale K, Nagapurkar M, Kaldate P, Kumbhar O, Bala S. Artificial neural network to prescient the severity of Parkinson’s disease. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE; 2020. p. 174-9.
- [82] Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Comput Geosci 1984;10(2-3):191-203.
- [83] Izakian H, Abraham A. Fuzzy C-means and fuzzy swarm for fuzzy clustering problem. Expert Syst Appl 2011;38(3):1835-8.
- [84] Berget I, Mevik B-H, Næs T. New modifications and applications of fuzzy C-means methodology. Comput Stat Data Anal 2008;52(5):2403-18.
- [85] Chaira T. A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Appl Soft Comput 2011;11(2):1711-7.
- [86] Guo Z, Bai G. Application of least squares support vector machine for regression to reliability analysis. Chin J Aeronaut 2009;22(2):160-6.
- [87] Qu J, Zuo MJ. An LSSVR-based algorithm for online system condition prognostics. Expert Syst Appl 2012;39(5):6089-102.
- [88] Cai Y, Wang H, Ye X, Fan Q. A multiple-kernel LSSVR method for separable nonlinear system identification. J Control Theory Appl 2013;11(4):651-5.
- [89] Huang C-L, Tsai C-Y. A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting. Expert Syst Appl 2009;36(2):1529-39.
- [90] Guru D, Suhil M, Raju LN, Kumar NV. An alternative framework for univariate filter based feature selection for text categorization. Pattern Recogn Lett 2018; 103:23-31.
- [91] Tabakhi S, Moradi P, Akhlaghian F. An unsupervised feature selection algorithm based on ant colony optimization. Eng Appl Artif Intel 2014;32:112-23.
- [92] Ballabio D. A MATLAB toolbox for Principal Component Analysis and unsupervised exploration of data structure. Chemometr Intell Lab Syst 2015;149: 1-9.
- [93] Meyer-Baese A, Wismueller A, Lange O. Comparison of two exploratory data analysis methods for fMRI: unsupervised clustering versus independent component analysis. IEEE Trans Inf Technol Biomed 2004;8(3):387-98.
- [94] Ivosev G, Burton L, Bonner R. Dimensionality reduction and visualization in principal component analysis. Anal Chem 2008;80(13):4933-44.
- [95] Tsanas A, Little MA, McSharry PE, Ramig LO. Enhanced classical dysphonia measures and sparse regression for telemonitoring of Parkinson’s disease progression. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE; 2010. p. 594-7.
- [96] Little M, Mcsharry P, Roberts S, Costello D, Moroz I. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. NaturePrecedings 2007. 1-1.
- [97] Kaur H, Malhi AK, Pannu HS. Machine learning ensemble for neurological disorders. Neural Comput Appl 2020;32:12697-714.
- [98] Lletı R, Ortiz MC, Sarabia LA, S´anchez MS. Selecting variables for k-means cluster analysis by using a genetic algorithm that optimises the silhouettes. Anal Chim Acta 2004;515(1):87-100.
- [99] Shahapure KR, Nicholas C. Cluster quality analysis using silhouette score. In: 2020 IEEE 7th international conference on data science and advanced analytics (DSAA). IEEE; 2020. p. 747-8.
- [100] G. Frahling and C. Sohler, “A fast k-means implementation using coresets,” in Proceedings of the twenty-second annual symposium on Computational geometry, 2006, pp. 135-143.
- [101] Campello RJ, Hruschka ER. A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Set Syst 2006;157(21):2858-75.
- [102] Gajdoš M, Mračková M, Elfmarková N, Rektorová I, Mikl M. 50. Comparison of canonical correlation analysis and pearson correlation in resting state fMRI in patients with parkinson’s disease. Clin Neurophysiol 2015;126(3):e47-8.
- [103] J. I. Daoud, “Multicollinearity and regression analysis,” in Journal of Physics: Conference Series, 2017, vol. 949, no. 1, p. 012009: IOP Publishing.
- [104] Farrar DE, Glauber RR. Multicollinearity in regression analysis: the problem revisited. Rev Econ Stat 1967:92-107.
- [105] K. P. Vatcheva, M. Lee, J. B. McCormick, and M. H. Rahbar, “Multicollinearity in regression analyses conducted in epidemiologic studies,” Epidemiology (Sunnyvale, Calif.), 6 (2), 2016, 0.
- [106] Omrani E, Khoshnevisan B, Shamshirband S, Saboohi H, Anuar NB, Nasir MHNM. Potential of radial basis function-based support vector regression for apple disease detection. Measurement 2014;55:512-9.
- [107] Wong T-T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn 2015;48(9):2839-46.
- [108] Meijer RJ, Goeman JJ. Efficient approximate k-fold and leave-one-out cross-validation for ridge regression. Biom J 2013;55(2):141-55.
- [109] Vafaei S, et al. Improving accuracy estimation of Forest Aboveground Biomass based on incorporation of ALOS-2 PALSAR-2 and Sentinel-2A imagery and machine learning: A case study of the Hyrcanian forest area (Iran). Remote Sens (Basel) 2018;10(2):172.
- [110] Yue J, et al. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens (Basel) 2017;9(7):708.
- [111] Alexander DL, Tropsha A, Winkler DA. Beware of R 2: simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J Chem Inf Modeling 2015;55(7):1316-22.
- [112] Midi I, Dogan M, Koseoglu M, Can G, Sehitoglu M, Gunal D. Voice abnormalities and their relation with motor dysfunction in Parkinson’s disease. Acta Neurol Scand 2008;117(1):26-34.
- [113] Stachler RJ, et al. Clinical practice guideline: hoarseness (dysphonia)(update). Otolaryngol Head Neck Surg 2018;158(1_suppl):S1-42.
- [114] Rueda A, Krishnan S. Feature analysis of dysphonia speech for monitoring Parkinson’s disease. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE; 2017. p. 2308-11.
- [115] Paulino CEB, et al. Relationship between oropharyngeal geometry and vocal parameters in subjects with Parkinson’s disease. J Voice 2022.
- [116] Sewall GK, Jiang J, Ford CN. Clinical evaluation of Parkinson’s-related dysphonia. The Laryngoscope 2006;116(10):1740-4.
- [117] Arnulf I. REM sleep behavior disorder: motor manifestations and pathophysiology. Mov Disord 2012;27(6):677-89.
- [118] Orso B, Brosse S, Frasnelli J, Arnaldi D. Opportunities and pitfalls of REM sleep behavior disorder and olfactory dysfunction as early markers in Parkinson’s disease. J Parkinsons Dis 2024;Preprint:1-11.
- [119] Rusz J, et al. Acoustic assessment of voice and speech disorders in Parkinson’s disease through quick vocal test. Mov Disord 2011;26(10):1951-2.
- [120] Chiaramonte R, Bonfiglio M. Acoustic analysis of voice in Parkinson’s disease: a systematic review of voice disability and meta-analysis of studies. Revista de neurologia 2020;70(11):393-405.
- [121] Costanzo P, Orphanou K. Performance, Transparency and Time. Feature selection to speed up the diagnosis of Parkinson’s disease, arXiv preprint arXiv: 2206.03716, 2022.
- [122] Brockmann M, Storck C, Carding PN, Drinnan MJ, Voice loudness and gender effects on jitter and shimmer in healthy adults, 2008.
- [123] Farrús M, Hernando J, Ejarque P. Jitter and shimmer measurements for speaker recognition. In: 8th Annual Conference of the International Speech Communication Association; 2007 Aug. 27-31; Antwerp (Belgium).[place unknown]: ISCA; 2007. International Speech Communication Association (ISCA); 2007. p. 778-81.
- [124] Upadhya SS, Cheeran A, Nirmal J. Statistical comparison of Jitter and Shimmer voice features for healthy and Parkinson affected persons. In: 2017 second international conference on electrical, computer and communication technologies (ICECCT). IEEE; 2017. p. 1-6.
- [125] Patra AK, Ray R, Abdullah AA, Dash SR. Prediction of Parkinson’s disease using ensemble machine learning classification from acoustic analysis. J Phys: Conf Series 2019;1372(1):012041. IOP Publishing.
- [126] Tsanas A, Little M, McSharry P, Ramig L. Accurate telemonitoring of Parkinson’s disease progression by non-invasive speech tests. NaturePrecedings 2009:1.
- [127] Song J, et al. Smartphone-based mobile detection platform for molecular diagnostics and spatiotemporal disease mapping. Anal Chem 2018;90(7): 4823-31.
- [128] Milho I, Fred A. A user-friendly development tool for medical diagnosis based on Bayesian Networks. Enterprise Information Systems II 2001:113-8.
- [129] Prats C, et al. Individual-based modeling of tuberculosis in a user-friendly interface: understanding the epidemiological role of population heterogeneity in a city. Front Microbiol 2016;6:169695.
- [130] Rodrigues JJ, de la Torre I, Fernández G, López-Coronado M. Analysis of the security and privacy requirements of cloud-based electronic health records systems. J Med Internet Res 2013;15(8):e2494.
- [131] Silva I, Soto M. Privacy-preserving data sharing in healthcare: An in-depth analysis of big data solutions and regulatory compliance. Int J Appl Health Care Anal 2022;7(1):14-23.
- [132] Schimpf B, et al. Integration of real-time electronic health records and wireless technology in a mobile stroke unit. J Stroke Cerebrovasc Dis 2019;28(9):2530-6.
- [133] Albahri OS, et al. Systematic review of real-time remote health monitoring system in triage and priority-based sensor technology: taxonomy, open challenges, motivation and recommendations. J Med Syst 2018;42:1-27.
- [134] Yazdani A, Safdari R, Ghazisaeedi M, Beigy H, Sharifian R. Scalable architecture for telemonitoring chronic diseases in order to support the CDSSs in a common platform. Acta Informatica Medica 2018;26(3):195.
- [135] Kasprzyk A, et al. EnsMart: a generic system for fast and flexible access to biological data. Genome Res 2004;14(1):160-9.
- [136] Panigutti C, Beretta A, Giannotti F, Pedreschi D. Understanding the impact of explanations on advice-taking: a user study for AI-based clinical Decision Support Systems. In: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems; 2022. p. 1-9.
- [137] Schoonderwoerd TA, Jorritsma W, Neerincx MA, Van Den Bosch K. Human-centered XAI: Developing design patterns for explanations of clinical decision support systems. Int J Hum Comput Stud 2021;154:102684.
- [138] Manresa-Yee C, Roig-Maimó MF, Ramis S, Mas-Sansó R. Advances in XAI: explanation interfaces in healthcare. In: Springer; 2021. p. 357-69.
- [139] Lötsch J, Kringel D, Ultsch A. Explainable artificial intelligence (XAI) in biomedicine: Making AI decisions trustworthy for physicians and patients. BioMedInformatics 2021;2(1):1-17.
- [140] Zhu H, Wang Y, Wang K, Chen Y. Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem. Expert Syst Appl 2011;38(8): 10161-9.
- [141] Wang D, Tan D, Liu L. Particle swarm optimization algorithm: an overview. Soft Comput 2018;22:387-408.
- [142] Hu W, Yan L, Liu K, Wang H. A short-term traffic flow forecasting method based on the hybrid PSO-SVR. Neural Process Lett 2016;43:155-72.
- [143] Liang H, Zou J, Li Z, Khan MJ, Lu Y. Dynamic evaluation of drilling leakage risk based on fuzzy theory and PSO-SVR algorithm. Futur Gener Comput Syst 2019; 95:454-66.
- [144] Duan P, Xie K, Guo T, Huang X. Short-term load forecasting for electric power systems using the PSO-SVR and FCM clustering techniques. Energies 2011;4(1): 173-84.
- [145] Laszlo M, Mukherjee S. A genetic algorithm that exchanges neighboring centers for k-means clustering. Pattern Recogn Lett 2007;28(16):2359-66.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7708dc3e-c2ae-495a-b2d4-f24c53bdc9d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.