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Abstract. The paper considers a particular group of rule interestingness measures, called Bayesian confirmation measures, which have

become the subject of numerous, but often exclusively theoretical studies. To assist and enhance their analysis in real-life situations, where

time constraints may impede conducting such time consuming procedures, a visual technique has been introduced and described in this

paper. It starts with an exhaustive and non-redundant set of contingency tables, which consists of all possible tables having the same number

of observations. These data, originally 4-dimensional, may, owing to an inherent constraint, be effectively represented as a 3-dimensional

tetrahedron, while an additional, scalar function of the data (e.g. a confirmation measure) may be rendered using colour.

Dedicated analyses of particular colour patterns on this tetrahedron allow to promptly perceive particular properties of the visualized

measures. To illustrate the introduced technique, a set of 12 popular confirmation measures has been selected and visualized. Additionally,

a set of 9 popular properties has been chosen and the visual interpretations of the measures in terms of the properties have been presented.

Key words: visualization, interestingness measures, confirmation measures, properties of confirmation measures.

1. Introduction

Development of various visualization techniques and tools be-

comes increasingly important and common. In “Information

Visualization in Data Mining and Knowledge Discovery” [1],

the following purposes of visualization are named: “Human

beings look for structure, features, patterns, trends, anomalies,

and relationships in data. Visualization supports this by pre-

senting the data in various forms with differing interactions.

A visualization can provide a qualitative overview of large

and complex data sets, can summarize data, and can assist in

identifying regions of interest and appropriate parameters for

more focused quantitative analysis. In an ideal system, visu-

alization harnesses the perceptual capabilities of the human

visual system”.

Following that trend, we propose to exploit visualization

of interestingness measures in order to facilitate and support

the analysis of their properties. Interestingness measures are

commonly used to evaluate patterns (e.g. expressed in form

of decision rules) induced from data sets. The plurality of

measures proposed and discussed in the literature created the

need for and the rapid growth of analysis of properties pos-

sessed by the interestingness measures. The determination of

their properties groups the measures according to their be-

haviour in particular situations (a feature especially useful in

cases of idiosyncratic data sets, e.g. sets with heavily unbal-

anced classes, as in [2]) and makes it easier to choose the

right measure.

The visualization that we propose has been conceived to

aid the process of analysis of measures with respect to their

properties. Our technique, as exemplified through Matlabr-

based implementation, allows to conduct a preliminary de-

termination of properties possessed by each visualized mea-

sure. It also facilitates finding counter-examples that rule out

particular properties. Our visualization significantly eases the

property analysis for the measures already known in the liter-

ature, but also for newly developed measures (e.g. automati-

cally generated).

In the paper, the visualization results are presented for a

particular group of interestingness measures called confirma-

tion measures, designed for evaluation of decision rules, in

the form of “if premise, then conclusion”. The confirmation

measures are characterised by the fact that they obtain:

• values > 0 when the premise of a rule confirms its con-

clusion (confirmation),

• values = 0 when the rule’s premise and conclusion are

neutral to each other (neutrality),

• values < 0 when the premise disconfirms the conclusion

(disconfirmation).

Our analysis using measure visualization focuses on the fol-

lowing properties:

• property M , of monotonic dependency of the measure on

the number of objects satisfying (supporting) or not the

premise or the conclusion of the rule [3–5],

• property Ex1, and its generalization to weak Ex1, assuring

that any conclusively confirmatory rule is assigned a higher

value of a measure than any rule which is not conclusively

confirmatory, and any conclusively disconfirmatory rule is

assigned a lower value than any rule which is not conclu-

sively disconfirmatory [6, 7],

• property L (Logicality), and its generalization to weak L,

indicating the conditions under which measures should ob-

tain their maximal or minimal values [6–8],
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• properties of symmetry, being a whole set of properties,

characterising how the value of a confirmation measure

relates to its value obtained after the rule’s premise and

conclusion are interchanged and/or negated [3, 6, 8–11].

Let us also note that another property closely related to L,

Ex1 and their generalizations is maximality/minimality, pro-

posed in [12].

This paper builds on the technique proposed in [13, 14],

in which the idea of visualizing the confirmation measures

using barycentric coordinates was introduced, and on the pre-

liminary results, concerning the visual analysis of properties

of confirmation measures, presented in [15].

The technique presented in this paper focuses on visual-

izing the whole domains of different measures used in the

data analysis process. In particular, it may concern measures

applied at early stages, e.g. interestingness measures used to

evaluate and filter patterns (e.g. decision rules). This is what

differentiates our technique from classic data visualization ap-

proaches, commonly applied in KDD and ML, which are basi-

cally concerned with representing selected evaluations of ap-

plied tools, e.g. the performance of classifiers. In most typical

applications these are usually two-dimensional characteristics,

e.g. ROC curves.

The rest of the paper is organized as follows. Section 2 de-

fines popular confirmation measures and presents an overview

of their common properties. Section 3 demonstrates the used

visualization technique. Visualization-based analysis of con-

firmation measures with respect to their properties is conduct-

ed in Sec. 4. Final remarks and conclusions are contained in

Sec. 5.

2. Confirmation measures and their properties

This paper concentrates on a particular group of interesting-

ness measures called confirmation measures. They evaluate

rule patterns induced from a set of objects U described by a

non-empty finite set of attributes A with respect to their rel-

evance and utility [16]. In particular, confirmation measures

quantify the degree to which the evidence in the rule’s premise

E provides support for or against the hypothesised piece of

evidence in the rule’s conclusion H [8].

Formally, for a rule E → H , an interestingness measure

c(H, E) has the property of Bayesian confirmation when it

satisfies the following conditions:

c(H, E)



















> 0 when P (H |E) > P (H),

= 0 when P (H |E) = P (H),

< 0 when P (H |E) < P (H).

(1)

Thus, the confirmation is interpreted as an increase in the

probability of the conclusion H provided by the premise E
(similarly for the neutrality and the disconfirmation).

Let us observe that in the context of a particular set of

objects U , the relation between E and H may be quantified

by four non-negative numbers a, b, c and d, briefly represent-

ed in a 2 × 2 table (Table 1). Notice that every confirmation

measure c(H, E) is a scalar function f of a, b, c and d.

Table 1

An exemplary contingency table of the rule’s premise and conclusion

H ¬H Σ

E a c a + c

¬E b d b + d

Σ a + b c + d n

At the same time a, b, c and d can be used to esti-

mate different probabilities: e.g. the probability of the premise

is expressed as P (E) = (a + c)/n, the conditional prob-

ability of the conclusion given the premise is P (H |E) =
P (H ∩ E)/P (E) = a/(a + c). This allows to reformulate

the (1) conditions in the following manner:

c(H, E)



































> 0 when
a

a + c
>

a + b

n
,

= 0 when
a

a + c
=

a + b

n
,

< 0 when
a

a + c
<

a + b

n
.

(2)

Notice that ([17]) given a + c 6= 0 and n 6= 0, the formula-

tion (2) is logically equivalent to

c(H, E)















> 0 when ad − bc > 0,

= 0 when ad − bc = 0,

< 0 when ad − bc < 0.

(3)

The main difference between formulations (2) and (3) con-

cerns situations when a + c = 0 and n = 0 (although the

second condition will never occur, as n is always assumed to

be positive), because in those cases the measure is undefined

according to formulation (2).

Let us additionally stress that the list of alternative, non-

equivalent measures of confirmation is quite large [6, 18]. It

is due to the fact that the (1) conditions do not impose any

constraints on the measures except for requiring when the

measures should obtain positive, negative or zero values. The

set of 12 selected, popular confirmation measures is presented

in Table 2. For further information concerning those measures

refer to: D(H, E) – [19], M(H, E) – [20], S(H, E) – [21],

N(H, E) – [22], C(H, E) – [23], F (H, E) – [24], Z(H, E)
– [6], A(H, E)–c4(H, E) – [7].

The definitions of measures Z(H, E), A(H, E),
c1(H, E), c2(H, E), c3(H, E) and c4(H, E) in Table 2

are formulated for the following (defined) situations: that

of confirmation (ad − bc > 0) and that of disconfirmation

(ad − bc < 0). In the third possible (defined) situation, i.e.

when ad − bc = 0, the measures default to 0. For reasons of

brevity the last situation is omitted from the definitions.

Let us point out that some of the confirmation measures

(in particular c1, c2, c3, c4) can be regarded as derived, be-

cause they were formed so that their definition would benefit

from valuable properties of their constituents [7].
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Table 2

Popular confirmation measures

D(H, E) = P (H|E) − P (H) =
a

a + c
−

a + b

n

M(H, E) = P (E|H) − P (E) =
a

a + b
−

a + c

n

S(H, E) = P (H|E) − P (H|¬E) =
a

a + c
−

b

b + d

N(H, E) = P (E|H) − P (E|¬H) =
a

a + b
−

c

c + d

C(H, E) = P (E ∧ H) − P (E)P (H) =
a

n
−

(a + c)(a + b)

n2

F (H, E) =
P (E|H) − P (E|¬H)

P (E|H) + P (E|¬H)
=

ad − bc

ad + bc + 2ac

Z(H, E) =

8>>><>>>:1 −
P (¬H|E)

P (¬H)
=

ad − bc

(a + c)(c + d)
in case of confirmation

P (H|E)

P (H)
− 1 =

ad − bc

(a + c)(a + b)
in case of disconfirmation

A(H, E) =

8>>><>>>:P (E|H) − P (E)

1 − P (E)
=

ad − bc

(a + b)(b + d)
in case of confirmation

P (H) − P (H|¬E)

1 − P (H)
=

ad − bc

(b + d)(c + d)
in case of disconfirmation

c1(H, E) =

8>>><>>>:α + βA(H, E) in case of confirmation when c = 0

αZ(H, E) in case of confirmation when c > 0

αZ(H, E) in case of disconfirmation when a > 0

−α + βA(H, E) in case of disconfirmation when a = 0

c2(H, E) =

8>>><>>>:α + βZ(H, E) in case of confirmation when b = 0

αA(H, E) in case of confirmation when b > 0

αA(H, E) in case of disconfirmation when d > 0

−α + βZ(H, E) in case of disconfirmation when d = 0

c3(H, E) =

(
A(H, E)Z(H, E) in case of confirmation

−A(H, E)Z(H, E) in case of disconfirmation

c4(H, E) =

(
min(A(H, E), Z(H, E)) in case of confirmation

max(A(H, E), Z(H, E)) in case of disconfirmation

The 12 selected confirmation measures obtain values rang-

ing from −1 to +1, except for measures D(H, E) and

M(H, E) whose values approach −1 or +1 only for n ap-

proaching +∞. Moreover, measure C(H, E) originally ob-

tains values from −1/4 to +1/4 (regardless of n), so a simple

linear transformation (a multiplication by 4) has been intro-

duced and all further results concern the transformed C(H, E)
(for a detailed discussion of these aspects of the measures

see [25]). Finally, the parametrized measures (c1(H, E) and

c2(H, E), both depending on parameters α and β) have been

computed with the values of α = β = 1/2.

The ongoing argument between Bayesians and Likeli-

hoodists about the probabilistic clarification of what con-

firmation should mean resulted in defining measures that

come in pairs, some of them bayesian-inspired and the

others likelihoodist-inspired (e.g. D(H, E) and M(H, E),
S(H, E) and N(H, E), Z(H, E) and A(H, E), c1(H, E) and

c2(H, E); measure F (H, E) has no popular counterpart, but it

can easily be defined). Pairs of such measures have exchange-

able, bayesian-likelihoodist, properties, and may be treated as

adjoint. Other measures do not form pairs, often being self-

adjoint in this respect (e.g. C(H, E), c3(H, E) and c4(H, E)).

To bring even further characterization of measures and

to choose a suitable one for a particular application and for

particular user’s expectations, many properties have been pro-

posed and compared in the literature [9, 12, 16, 26]. In the

context of confirmation measures the following properties are

often analysed: property M , Ex1 and weak Ex1, L and weak

L, and a group of symmetry properties. Each of those prop-

erties groups the measures according to similarities in their

behaviour.

2.1. Property of monotonicity M . In [4] the application of

confirmation measures to the evaluation of usefulness of de-

cision rules has been considered. The discussion led to for-

mulation of a desirable property of monotonicity M for con-

firmation measures.

Property M requires that a confirmation measure c(H, E)
is a function:

• non-decreasing with respect to a and d, and

• non-increasing with respect to b and c.
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It means that any evidence in which the premise E and the

conclusion H (or, analogously, ¬E and ¬H) hold together is

required to increase (or at least not decrease) the confirmation

of the rule E → H . Thus, e.g. arrival of new objects support-

ing the rule cannot lower the value of the measure. On the

other hand, with respect to b (or, analogously, with respect to

c) property M means that any evidence in which ¬E and H
hold (or, analogously, E and ¬H hold) is required to decrease

(or at least not increase) the confirmation of the rule E → H .

The property M has also proved to be very useful regard-

ing multicriteria evaluation of patterns in form of rules [3,5].

2.2. Property Ex1 and its generalization to weak Ex1.

To handle the plurality of alternative confirmation measures,

property Ex1 considering inductive logic as an extrapolation

from classical deductive logic, has been proposed in [6].

Given any V > 0, let us introduce a function v as in [6]:

v(H, E) =















V, when E |= H,

−V, when E |= ¬H,

0, otherwise.

(4)

For any argument (H, E) function v assigns it the same posi-

tive value V (e.g. +1) when the premise E of the rule entails

the conclusion H (i.e. E |= H). The value of the opposite

sign, −V (e.g. −1), is assigned when the premise E refutes

the conclusion H (i.e. E |= ¬H). In all other cases (i.e. when

the premise is neither conclusively confirmatory nor conclu-

sively disconfirmatory for the conclusion) function v obtains

value 0.

According to [6], the relationship between the logical im-

plication or refutation of H by E, and the conditional proba-

bility of H subject to E should fulfil the following principle

Ex1 based on function v:

if v(H1, E1) > v(H2, E2),

then c(H1, E1) > c(H2, E2).
(5)

Measures satisfying property Ex1 rank the conclusive-

ly confirmatory rules (e.g. the rule: “if x is a jack, then x
is a face-card”) higher than non-conclusively confirmatory

rules. On the very bottom of the ranking are conclusive-

ly disconfirmatory rules (e.g. “if x is seven of spades, then

x is a face-card”). Property Ex1 concentrates on cases of

entailment or refutation, which are equivalent to situations

when P (H |E) = 1 (entailment) or P (H |E) = 0 (refuta-

tion). Thus, measures possessing property Ex1 should place

rules for which there are no counterexamples (i.e. c = 0) on

top ranking places (high, positive value of the confirmation

measure) and rules for which there are no positive examples

(a = 0) on low ranking places (low, negative value of the con-

firmation measure). Measure Z(H, E) was introduced in [6]

as enjoying Ex1.

As observed in [7], property Ex1 implies that if a confir-

mation measure c(H, E) reaches its maximum, then c = 0.

However, it is also possible that c = 0 and the measure does

not reach its maximal value. The consideration for minimal

values are analogous and focus on a = 0.

The ranking of rules depending on entailment and refuta-

tion done by measures possessing Ex1 property seems nat-

urally desirable. Such an approach, however, can sometimes

result in an inconvenient ranking of rules, as the considera-

tions are boiled down to two situations: when there are no

counterexamples to the rule, and when there are no positive

examples to the rule [7].

To eliminate such undesirable rule rankings, a generaliza-

tion of Ex1 into weak Ex1 has been proposed in [7]. Weak

Ex1 is based on the fact that in case of confirmation, a confir-

mation measure c(H, E) should express how much it is more

probable to have H when E is present rather than when ¬E
is present. In this context weak Ex1 guarantees that a con-

firmation measure c(H, E) cannot attain its maximal value

unless P (H |E) = 1 (or equivalently, c = 0, i.e. there are no

counterexamples to the rule) and P (H |¬E) = 0 (or equiv-

alently, b = 0, i.e. there are no objects satisfying the rule’s

conclusion but not its premise). Analogously, for the case

of disconfirmation weak Ex1 guarantees that a confirmation

measure c(H, E) cannot attain its minimal value unless a = 0
and d = 0. Thus, in case of confirmation, weak Ex1 implies

that if a confirmation measure reaches its maximal value, then

c = b = 0. However, it is possible that c = b = 0 and still the

measure does not reach its maximum.

2.3. Property L and its generalization to weak L. The log-

icality property L can be regarded as closely related to Ex1

as it also concerns cases of entailment or refutation of the

rule’s conclusion by its premise [6, 23].

Formally, a confirmation measure c(H, E) enjoys property

L under the following conditions:

• c(H, E) is maximal when E |= H , and

• c(H, E) is minimal when E |= ¬H .

Equivalently, a confirmation measure possessing property L
obtains its maximum when there are no counterexamples to

a rule, i.e. c = 0, and obtains its minimum when there are

no positive examples to the rule, i.e. when a = 0 [7]. Let

us observe that property L implies that if c = 0, then a con-

firmation measure c(H, E) reaches its maximum, however,

c(H, E) can also reach its maximum when c > 0.

Thus, if both properties L and Ex1 are satisfied, then

c(H, E) reaches its maximum if and only if c = 0.

Similarly as with Ex1, for measures possessing L there

occurs a danger of obtaining unwanted rule rankings. To solve

this problem a generalization of logicality L into weak L
has been proposed [7], stating that a confirmation measure

c(H, E) possesses the weak L property when it satisfies the

following conditions:

• c(H, E) is maximal when E |= H and ¬E |= ¬H , and

• c(H, E) is minimal when E |= ¬H and ¬E |= H .

Now, weak L implies that if c = b = 0, then a confirmation

measure c(H, E) reaches its maximum, and when a = d = 0,

then c(H, E) obtains its minimal value.
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2.4. Properties of symmetry. A set of popular confirmation

measures has been analysed in [9] from the viewpoint of the

following four properties of symmetry, earlier also discussed

in [23]:

• evidence symmetry (ES): c(H, E) = −c(H,¬E),
• commutativity (also referred to as inversion) symmetry

(IS): c(H, E) = c(E, H),
• hypothesis symmetry (HS): c(H, E) = −c(¬H, E),
• total (also referred to as evidence-hypothesis) symmetry

(EHS): c(H, E) = c(¬H,¬E),

The above symmetry properties consider how the value of a

confirmation measure c(H, E) relates to its value obtained

for the situation when the rule’s premise is negated (evidence

symmetry), when the premise and conclusion switch posi-

tions (inversion symmetry), when the conclusion is negated

(hypothesis symmetry) or, finally, when both premise and con-

clusion are negated (evidence-hypothesis symmetry).

More recently, in [6] the authors have argued for a more

systematic analysis of symmetry properties. They extended the

group of symmetries to include evidence-inversion symme-

try, hypothesis-inversion symmetry and evidence-hypothesis-

inversion symmetry. The idea behind these symmetries is

however analogous to that in [9], thus, in this paper we shall

only focus on ES, IS, HS and EHS. A detailed discus-

sion on whether particular symmetries are desirable or not

for interestingness measures can be found in [6, 9–11].

Finding the analysis of the above properties valuable and

useful for the determination of truly meaningful confirmation

measures, in the next sections we propose a particular visual-

ization technique that supports and speeds up the process of

property analysis of measures, especially useful with rapidly

(i.e. in an automated way) generated measures (when there

may be no time for detailed analysis of their properties).

3. The visualization technique

Some characteristics of the considered confirmation measures

can best be demonstrated with regard to a particular data set

(this includes the visualization technique to be presented in

this chapter). In our analysis, the data set consist of an ex-

haustive and non-redundant set of contingency tables. Giv-

en a constant n > 0 (the total number of observations), it

is generated as the set of all possible [ a c
b d ] tables satisfying

a + b + c + d = n. The set thus contains exactly one copy

of each such contingency table. The set reveals all areas that

can be possibly occupied by the four-dimensional domain of

a measure, even those that would be omitted when using a

real-life data set. Thus, our approach gives an insight into all

possible behaviours and features of the visualized measures.

Such a construction of the data set gives the results the neces-

sary generality, rather than leaving them application-specific.

The total number of contingency tables t in the set is given

by t = (n + 1)(n + 2)(n + 3)/6. That makes it a polynomi-

al (not exponential), but nevertheless, rapid growth, with the

number t becoming considerable: the number of all tables for

n = 128 equals t = 366145, while for n = 1000 (a typical

number of objects in a non-trivial, benchmark classification

data set) t exceeds hundreds of millions.

The data set comprises thus t rows and 4 columns, with the

columns representing a, b, c and d. Because the four columns

correspond to four degrees of freedom, visualization of such

data in the form of a scatter-plot would require four dimen-

sions. Owing to the condition a + b + c + d = n, the number

of degrees of freedom is reduced by one, which means that

is it possible to represent such data in three dimensions.

A simple progression of geometrical representations of

constrained data sets is as follows:

• any one value, a ≥ 0, satisfying a = n > 0 may be repre-

sented as a single point (zero dimensions),

• any two values, a ≥ 0 and b ≥ 0, satisfying a+ b = n > 0
may be represented as a point of a segment (one dimen-

sion),

• any three values, a ≥ 0, b ≥ 0 and c ≥ 0, satisfying

a + b + c = n > 0 may be represented as point of a

triangle (two dimensions),

• any four values, a ≥ 0, b ≥ 0, c ≥ 0 and d ≥ 0, satisfying

a + b + c + d = n > 0 may be represented as a point of a

tetrahedron (three dimensions).

Each of the above shapes (point, segment, triangle, tetrahe-

dron) constitutes a simplex in the corresponding number of

dimensions (0, 1, 2 and 3, respectively). Notice that the sim-

plex is always a convex hull of its vertices (so any vector

representing the coordinates of a point of the simplex may be

thus represented as a convex combination of vectors represent-

ing the coordinates of the vertices). Because, as stated above,

one needs three dimensions to represent the constrained a,

b, c and d variables, the three-dimensional simplex, e.g. the

tetrahedron, will be used in all further visualizations.

The tetrahedron consists of four vertices, six edges and

four faces. A skeleton view (only edges visible) of an exem-

plary tetrahedron is depicted in Fig. 1, representing what will

be referred to as the standard view, which is constructed as

follows.

Fig. 1. A skeleton visualization of the tetrahedron

Imagine the 8 possible vectors of the form
[

x
y
z

]

, where

x, y, z ∈ {−1, +1}, constituting the vertices of a 2 × 2 × 2
cube. The tetrahedron in question is inscribed into this cube
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with its four vertices A, B, C and D coinciding with the

following cube’s vertices: A :
[

+1
+1
+1

]

, B :
[

−1
+1
−1

]

, C :
[

−1
−1
+1

]

and D :
[

+1
−1
−1

]

. Apart from those, the tetrahedron features six

edges (segments): AB, AC, AD, BC, BD and CD, and four

faces (triangles): ABC, BCD, CDA and DAB.

In the standard view (see Fig. 1), the tetrahedron vertices

can be seen as follows:

• vertex C: in the centre,

• vertex A: above C,

• vertices B and D: below C, on the left and right, respec-

tively.

The viewing angles (azimuth, elevation) in this view is

(−35◦, 22◦), which approximately corresponds to viewing the

tetrahedron along (normalized) vector
[

0.53
0.76
−0.38

]

, the viewing

distance being ≈ 17.32 (i.e. from about point
[

−9.18
−13.16
6.58

]

to-

wards point
[

0
0
0

]

).

Assuming a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 and a+ b+ c+d =
n > 0, the original a, b, c and d values (i.e. the barycen-

tric coordinates of objects in some universe of consideration,

in this case: of contingency tables from the exhaustive and

non-redundant set of such tables) may be converted to their

corresponding x, y and z values (i.e. the Cartesian coordi-

nates of elements of a simplex, in this case: of points in the

tetrahedron defined above) using the formula:






x

y

z






=

a

n







+1

+1
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Thanks to the assumed conditions fractions
a

n
,

b

n
,

c

n
and

d

n
satisfy

a

n
≥ 0,

b

n
≥ 0,

c

n
≥ 0,

d

n
≥ 0 as well as

a

n
+

b

n
+

c

n
+

d

n
= 1, which makes them proper coefficients

of a convex combination of four vectors (in this case: the four

vertices of the tetrahedron).

Simultaneously, because a + b + c + d = n and n > 0, it

is impossible for a, b, c and d to satisfy a+b+c+d = 0. But

it is generally possible for them to satisfy the more specific,

marginal conditions, with the following implications:

• Condition a + b + c = 0. In this case d = n. The cor-

responding data matrix is then of the form [ 0 0
0 n ] and, as

such, corresponds to a point that is situated in the vertex

D of the tetrahedron (notice that of all points of the tetra-

hedron, this vertex is maximally ‘removed’ from vertices

A, B and C). Additional remarks:

– The actual position of the point is strictly determined.

– Analogous reasoning holds for all the other vertices

(and corresponding conditions).

• Condition a + b = 0. In this case c + d = n. The cor-

responding data matrix is then of the form
[

0 n1

0 n2

]

, where

n1+n2 = n and, as such, corresponds to a point that is sit-

uated in the edge CD of the tetrahedron (notice that of all

points of the tetrahedron, this edge is maximally ‘removed’

from vertices A and B). Additional remarks:

– The actual position of the point within the edge is

determined by n1 and n2: if n1 = 0, then the point

is situated in vertex D, if n2 = 0, then the point

is situated in vertex C, otherwise the point is situ-

ated strictly inside the convex hull of C and D; in

particular, if n1 = n2, which implies n1 > 0 and
n1

n
=

n1

n1 + n2

=
n1

n1 + n1

=
n1

2 · n1

=
1

2
(similarly:

n2

n
=

1

2
), it is equidistant from C and D.

– Analogous reasoning holds for all the other edges

(and corresponding conditions).

• Condition a = 0. In this case b + c + d = n. The corre-

sponding data matrix is then of the form
[

0 n2

n1 n3

]

, where

n1 + n2 + n3 = n and, as such, corresponds to a point

that is situated in the face BCD of the tetrahedron (notice

that of all points of the tetrahedron, this face is maximally

‘removed’ from vertex A). Additional remarks:

– The actual position of the point within the face is de-

termined by n1, n2 and n3: if n1 = 0, then the point

is situated in edge CD, if n2 = 0, then the point is

situated in edge BD, if n3 = 0, then the point is

situated in edge BC, otherwise the point is situated

strictly inside the convex hull of B, C and D; in par-

ticular, if n1 = n2 = n3, which implies n1 > 0 and
n1

n
=

n1

n1 + n2 + n3

=
n1

n1 + n1 + n1

=
n1

3 · n1

=
1

3

(similarly:
n2

n
=

n3

n
=

1

3
), it is equidistant from B,

C and D.

– Analogous reasoning holds for all the other faces (and

corresponding conditions).

If n1 > 0, n2 > 0, n3 > 0 and n4 > 0, then the point

corresponding to table [ n1 n3

n2 n4
], is situated strictly inside the

tetrahedron. In particular, if n1 = n2 = n3 = n4, the point

occupies its centre (and is thus equidistant from vertices A, B,

C and D). Otherwise at least one inequality between ni and

nj (with i 6= j) holds, and the point is not in the centre. The

principle is that whenever ni > nj , then the point is closer to

the vertex corresponding to ni than to that corresponding to

nj (e.g. if n1 > n2, then the point is closer to A than to B).

Summarizing, the condition a + b + c + d = n makes

it possible to visualize the originally four-dimensional data

in three dimensions, and three dimensions may be natural-

ly visualized in three-dimensional plots. Now, using colour

makes it possible to include a fourth dimension into the visu-

alization, which leaves room for an additional variable. The

visualization method may thus visualize any such variable, in

particular, any (also non-linear) function f(a, b, c, d) of a, b,

c and d (further referred to as the operational function).
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Fig. 2. The colour maps for the defined values of the operational function

Fig. 3. Three tetrahedron visualizations of f(a, b, c, d) = (a + d) − (b + c)

The actual colour map (i.e. the correspondence 〈colour

range〉 ↔ 〈operational function range〉) used in the following

visualizations (see Fig. 2) is as follows:

• dark blue ↔ minimal values of the function,

• pale green ↔ middle values of the function,

• dark brown ↔ maximal values of the function.

The number of colour shades in the map is limited to 64

only in order to emphasize the value changes. Non-numeric

values of the operational function, i.e. +∞, NaN and −∞,

if produced, will be depicted in special colours (i.e. colours

not occurring in the map). Since in this paper we focus

on measures of confirmation and the only occurring un-

defined values are NaNs, they will be depicted in ma-

genta.

Exemplary tetrahedron visualizations with the operational

function f(a, b, c, d) = (a + d)− (b + c) are shown in Fig. 3.

The values of this function range from −n (edge BC of

the tetrahedron) to +n (edge AD of the tetrahedron), so

the colour map in Fig. 2 should be interpreted accordingly.

The tetrahedron depicted in Fig. 3(left) consists of relatively

few points (t = 969, created for n = 16), which renders it

semi-transparent and thus provides some insight into its inter-

nal structure. All further visualizations show solid tetrahedra,

made of opaque faces and thus showing no details of their in-

teriors (see Fig. 3(middle), which shows a tetrahedron created

for n = 64, with only the faces visible). If interior views are

required, tetrahedron cuts with planes running parallel to the

faces may be shown (see Fig. 3(right), n = 64, with selected

internals visible).

The externals of the tetrahedron (as in Fig. 3(middle)) ac-

tually represent the extreme values of the arguments of the vi-

sualized function (as exemplified by the marginal conditions,

e.g. the point in vertex D is reached when a + b + c = 0,

points on the edge CD are reached when a + b = 0, etc.),

which may turn out to be particularly useful in some applica-

tions. For brevity, all the further visualizations will be of the

solid type (although other forms of visualization, including

animation, are also available). However, because static figures

show only one particular side of the tetrahedron, two views

are usually presented:

• Standard view (left-hand side). The viewing angles (az-

imuth, elevation): (−35 ◦, 22 ◦), viewing vector:
[

0.53
0.76
−0.38

]

,

viewing distance: ≈ 17.32.

• Rotated view (right-hand side). The viewing angles (az-

imuth, elevation): (145 ◦, 22 ◦), viewing vector:
[

−0.53
−0.76
−0.38

]

,

viewing distance: ≈ 17.32.

An exemplary 2-view tetrahedron visualization of the function

f(a, b, c, d) = (a + d) − (b + c) is shown in Fig. 4.

Fig. 4. A 2-view visualization of f(a, b, c, d) = (a + d) − (b + c)

An alternative to the 2-view visualization of the tetra-

hedron (i.e. the standard view and the rotated view), which

is 3-dimensional, is a 2-dimensional view of the net (i.e. a

set of planar triangles, which, when folded along selected

edges, become the faces) of the tetrahedron. An exemplary 2-

dimensional visualization of this net, in which the four faces

of the tetrahedron form a parallelogram consisting of two dis-

tinct rhombi, is presented in Fig. 5.
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Fig. 5. A 2D ‘parallelogram’ visualization of

f(a, b, c, d) = (a + d) − (b + c)

Notice that each of the three edges: AB, AC and BD is

actually shown twice in the ‘parallelogram’ visualization. In

other respects, in particular as far as the faces are concerned,

the 2-dimensional visualization is more economical than the

3-dimensional visualization, as it shows each face only once,

while 3D 2-view shows each of the two faces: ABC and

ACD twice (similary for all the edges).

Described conventional visualizations of operational func-

tions constitute only some of the numerous capabilities of the

presented visualization technique, which formally include sta-

tic (figures) and dynamic (animations) ones. A short summary

of static capabilities [13,14] (including those not demonstrat-

ed in this paper) is as follows:

• generalized views of single operational functions (e.g.

Figs. 3(middle), 4, 5) capable of demonstrating the gen-

eral properties of the functions, including:

– gradient profiles of the faces and edges,

– locations of extreme (minimal/maximal) values,

– locations of (potentially existing) undefined values,

• specialized views of single/multiple operational functions:

– regions of interest of single functions, i.e. only points

satisfying pre-defined conditions (e.g. Fig. 3(right)),

– differences between pairs of operational functions

[13, 14],

– variances of sets of operational functions [13],

– (weighted) means of sets of operational functions,

– directional derivatives of single functions,

– variability levels of single functions.

4. Finding properties using visualization

Having established the visualization technique based on pre-

senting a coloured tetrahedron for a particular confirmation

measure (the colour reflecting the values of the measure), let

us now consider how it facilitates the analysis of such mea-

sures. In case of the 12 selected confirmation measures (which

include the modified C(H, E) measure) the following holds:

• min f(a, b, c, d) = −1 (dark blue),

• mid f(a, b, c, d) = 0 (pale green),

• max f(a, b, c, d) = +1 (dark brown),

Additionally, NaN values of f(a, b, c, d) are rendered in ma-

genta.

The measures are depicted, in the form of the ‘paral-

lelogram’ visualizations, in Figs. 6–16. Notice that out of

every two rhombi that constitute the parallelogram, the left-

hand side ones correspond to non-positive values of the mea-

sures, while the right-hand side ones to non-negative va-

lues.

Fig. 6. A 2D ‘parallelogram’ visualization of D(H,E)

Fig. 7. A 2D ‘parallelogram’ visualization of M(H, E)

Fig. 8. A 2D ‘parallelogram’ visualization of S(H,E)

Fig. 9. A 2D ‘parallelogram’ visualization of N(H,E)
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Fig. 10. A 2D ‘parallelogram’ visualization of C(H,E)

Fig. 11. A 2D ‘parallelogram’ visualization of F (H,E)

Fig. 12. A 2D ‘parallelogram’ visualization of Z(H, E)

Fig. 13. A 2D ‘parallelogram’ visualization of A(H,E)

Fig. 14. A 2D ‘parallelogram’ visualization of c1(H,E)

Fig. 15. A 2D ‘parallelogram’ visualization of c2(H,E)

Fig. 16. A 2D ‘parallelogram’ visualization of c3(H, E) and

c4(H,E) (these two measures, although different in general, obtain

identical values in the external parts of the tetrahedron)

Further basic properties of the measures are easily dis-

cernible, as they are implied by the location of extreme (max-

imal and minimal) and intermediate values in the tetrahedron,

and the general forms of transitions between these. Additional

information is provided by the location of undefined values

(if present).

The following subsections provide analyses of the mea-

sures with respect to property M , Ex1, weak Ex1, L and

weak L as well as to four selected symmetries.

4.1. Visual analysis of property M . Property of monotonic-

ity M demands that a measure c(H, E) (by definition being a

scalar function f(a, b, c, d) of a, b, c and d) is a function that

is non-decreasing with respect to a and d, and non-increasing

with respect to b and c. Out of the 12 selected confirma-

tion measures the following possess this property: S(H, E),
N(H, E), F (H, E), Z(H, E), A(H, E), c1(H, E), c2(H, E),
c3(H, E) and c4(H, E).

Assuming that the values of the analysed measures range

from −1 to +1 (as it is for the 12 selected confirmation mea-

sures), we expect dark blue or dark brown values to express

their extremes. In this context, the “non-decreasing with a
and d” condition should be reflected in the visualization as

colours changing towards dark brown (increase of confirma-

tion) around vertices A and D. On the other hand, the colours

are expected to change towards dark blue (towards stronger

disconfirmation) around vertices B and C, in order to fulfil

the “non-increasing with b and c” condition.

The visualization allows thus to quickly identify situations

(counterexamples) being contrary to the demands of proper-
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ty M . Any case of colour change different than towards dark

brown (dark blue) around vertices A and D (B and C) shows

that the visualized measure does not satisfy property M . Let

us stress, however, that thorough analysis of property M re-

quires insight into the tetrahedron, as potential counterexam-

ples can also lie inside the shape.

The most conspicuous (but not sole) counterexamples in

Figs. 6, 7 and 10 are located in the AD edge, where the colour

changes from dark brown at vertex D to pale green at vertex

A (Figs. 6 and 7) and from dark brown in the middle of AD
to pale green at vertex A (Fig. 10). This indicates the decrease

of the measure values with a, contrary to the demands of the

property.

On the other hand, there are no observable counterexam-

ples to this property in Figs. 8, 9 and 11–16 which, together

with additional analysis of the inside of the tetrahedrons, de-

termines the possession of the property by the corresponding

measures.

4.2. Visual analysis of properties Ex1 and weak Ex1.

Property Ex1 implies that if a confirmation measure c(H, E)
reaches its maximum (minimum) then c = 0 (a = 0). Out of

the 12 selected confirmation measures the following possess

this property: F (H, E), Z(H, E), c1(H, E).
Assuming that the dark brown (dark blue) colour expresses

the maximal (minimal) value of the visualized measure, this

translates into expectation that the dark brown (dark blue)

colour cannot be found anywhere else than on the ABD
(BCD) face of the tetrahedron. The ABD (BCD) face con-

tains all points for which c = 0 (a = 0). Let us stress that

property Ex1 does not require the whole ABD (BCD) face

to be dark brown (dark blue), as it is possible that c = 0
(a = 0) and still the visualized measure c(H, E) does not

reach its maximal (minimal) value.

It is also important to notice that verification of posses-

sion of Ex1 using our visualization technique requires insight

into the tetrahedron, as any dark brown (dark blue) point in-

side the shape, i.e. not on the ABD (BCD) face, should be

interpreted as a counterexample, ruling out Ex1 from the set

of properties of the visualized measure.

Clear counterexamples to the demands of this property

can be seen in Fig. 13 as the whole ACD face consists of

dark brown points, violating the demand that they occur only

in ABD face.

On the other hand, there are no observable counterexam-

ples to this property in Figs. 11, 12 and 14 which, together

with additional analysis of the inside of the tetrahedrons, de-

termines the possession of the property by the corresponding

measures.

As to weak Ex1 property, it implies that if a confirma-

tion measure c(H, E) reaches its maximum (minimum) then

c = b = 0 (a = d = 0). Out of the 12 selected confirma-

tion measures the following possess this property: S(H, E),
N(H, E), c1(H, E), c2(H, E), c3(H, E) and c4(H, E).

In the context of visualization this translates into expecta-

tion that the dark brown (dark blue) colour can only be found

on the AD (BC) edge of the tetrahedron, as it contains all

points for which c = b = 0 (a = d = 0). Let us observe that

the weak Ex1 does not require the whole AD (BC) edge to

be dark brown, as it is possible that c = b = 0 (a = d = 0)

and still the visualized measure c(H, E) does not reach its

maximal value.

Similarly, as with Ex1 property, determination of weak

Ex1 requires insight into the tetrahedron, as any dark brown

(dark blue) point inside the shape, i.e. not on the AD (BC)

edge should be interpreted as a counterexample, ruling out

weak Ex1 from the set of properties of the visualized mea-

sure.

Counterexamples to the demands of weak Ex1 property

can be seen in Fig. 13 as the whole ACD face consists of

dark brown points, violating the demand that they occur only

in AD edge.

On the other hand, there are no observable counterexam-

ples to this property in Figs. 8, 9 and 14–16 which, together

with additional analysis of the inside of the tetrahedrons, de-

termines the possession of the property by the corresponding

measures.

4.3. Visual analysis of properties L and weak L. Property

L implies that if c = 0 (a = 0) then a confirmation mea-

sure c(H, E) obtains its maximal (minimal) value. Out of the

12 selected confirmation measures the following possess this

property: F (H, E) and Z(H, E).
Should the dark brown (dark blue) colour stand for the

maximum (minimum) of the visualized measure, we would

expect the whole ABD (BCD) face to be dark brown (dark

blue). This face contains all points for which c = 0 (a = 0).

It is important to notice that the whole ABD (BCD) face

must be dark brown (dark blue) if the visualized measure is to

possess the L property. We do not demand, however, that the

dark brown (dark blue) points lie only on the respective faces,

as the visualized measure can reach its maximum (minimum)

even when c > 0 (a > 0). This demand distinguishes deter-

mination of possession of property Ex1 from property L.

Moreover, contrary to property Ex1, when considering

property L, we do not need any insight into the tetrahedron.

We are only interested in the points for which c = 0 (a = 0),

thus the external ABD (BCD) face is enough for such analy-

ses. In this light, any non-dark brown (non-dark blue) point

on the ABD (BCD) face should be considered as a coun-

terexample, ruling out L from the set of properties of the

visualized measure.

All counterexamples in Figs. 6–10 and 13–16 are located

in the ABD (BCD) faces, which do contain points other than

dark brown (dark blue). This indicates non-maximal (non-

minimal) values for c = 0 (a = 0), contrary to the demands

of the property.

On the other hand, there are no counterexamples to this

property in Figs. 11 and 12, which determines the possession

of the property by the corresponding measures.

As to weak L property, it implies that if c = b = 0
(a = d = 0) then a confirmation measure c(H, E) obtains its

maximal (minimal) value. Out of the 12 selected confirma-

tion measures the following possess this property: S(H, E),
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N(H, E), F (H, E), Z(H, E), A(H, E), c1(H, E), c2(H, E),
c3(H, E) and c4(H, E).

Again, assuming that the dark brown (dark blue) colour

stands for the maximum (minimum) of the visualized mea-

sure, we expect the whole AD (BC) edge to be dark brown

(dark blue). Those edges contain all points for which (c = b =
0). It is important to notice that the whole AD (BC) edge

must be dark brown (dark blue) if the visualized measure pos-

sesses the weak L property. Similarly, as with property L, we

do not demand that the dark brown (dark blue) points lie only

on the respective edges. Again, this differentiates the weak

Ex1 property from weak L.

Moreover, for the analysis of a measure with respect to

weak L, we do not need any insight into the tetrahedron as

we are only interested in the points for which c = b = 0
(a = d = 0). Nevertheless, any non-dark brown (non-dark

blue) point on the AD (BC) edge should be considered as a

counterexample, ruling out weak L from the set of properties

of the visualized measure.

All counterexamples in Figs. 6, 7, and 10 are located in

the AD (BC) edges, which do contain points other than dark

brown (dark blue). This indicates non-maximal (non-minimal)

values for c = b = 0 (a = d = 0), contrary to the demands

of the property.

On the other hand, there are no counterexamples to this

property in Figs. 8, 9 and 11–16, which determines the pos-

session of the property by the corresponding measures.

4.4. Visual analysis of symmetry properties ES, IS, HS

and EHS.

Evidence symmetry. The property of evidence symmetry de-

mands that a measure obtains the same values, but of the op-

posite sign, for rules E → H and ¬E → H , i.e. c(H, E) =
−c(H,¬E). Let us assign to the E → H rule a contingency

table with a, b, c and d frequencies, and to the ¬E → H
rule a table with a′, b′, c′ and d′ frequencies. Then, the re-

quirement of the evidence symmetry can be formulated as

c(H, E) = f(a, b, c, d) = −c(H,¬E) = −f(a′, b′, c′, d′) =
−f(b, a, d, c). A row exchange in the contingency table can

be observed here, as a = b′, b = a′, c = d′ and d = c′.
In this context, a verification of possession of evidence

symmetry in the ‘parallelogram’ visualization can be done by

rotating the parallelogram by 180◦ about its middle (which

leads to the exchange of the left-hand side and the right-hand

side rhombi, with their orientation changed to upside-down)

and reversing the colour map. If the rotated and ‘recoloured’

parallelogram is not the same as the original one, then the

visualized measure does not possess the evidence symmetry.

The visualization allows thus to quickly identify situations

(counterexamples) being contrary to demands of the evidence

symmetry. Let us stress, however, that thorough analysis of

ES requires insight into the tetrahedron, as potential coun-

terexamples can also lie inside the shape.

In Figs. 6, 7 and 11–15 the counterexamples to evidence

symmetry are easily seen, as the rotated and ‘recoloured’ par-

allelograms are not the same as the original ones.

On the other hand, there are no observable counterex-

amples to this property in Figs. 8–10 and 16 which, togeth-

er with additional analysis of the inside of the tetrahedrons,

determines the possession of the evidence symmetry by the

corresponding measures.

Inversion symmetry. Moving on to the inversion symmetry,

it requires that a measure obtains the same values for rules

E → H and H → E, i.e. c(H, E) = c(E, H). A measure

possessing the inversion symmetry can be actually regarded as

an interestingness measure of itemsets instead of rules, as the

measure does not distinguish the position of the premise and

the conclusion (they can interchange without any influence

on the value of the measure). Associating a, b, c and d with

E → H and a′, b′, c′ and d′ with H → E, the requirement

of the inversion symmetry can be formulated as c(H, E) =
f(a, b, c, d) = c(E, H) = f(a′, b′, c′, d′) = f(a, c, b, d). A

transpose operation in the contingency table can be observed

here, as a = a′, b = c′, c = b′ and d = d′.
A measure depicted using the ‘parallelogram’ visualiza-

tion possesses the inversion symmetry provided that the left-

hand side rhombus is symmetric with respect to its longer

diagonal and the right-hand side rhombus is symmetric with

respect to its shorter diagonal. Naturally, a thorough analysis

of IS requires insight into the tetrahedron, as potential coun-

terexamples can also lie inside the shape. Let us observe that

since the inversion symmetry does not concern opposite signs

(as e.g. evidence symmetry does) there is no need to reverse

the colour map.

In Figs. 6–9 and 11 the counterexamples to inversion sym-

metry are easily seen in either rhombi, as neither the left-hand

side nor the right-hand side one possesses the required sym-

metry. Moreover, Figs. 12–14 and 15 show counterexamples

to this property, but only in the area of non-negative values,

i.e. in the right-hand side rhombus.

On the other hand, there are no observable counterexam-

ples to this property in Figs. 10 and 16 which, together with

additional analysis of the inside of the tetrahedrons, deter-

mines the possession of the inversion symmetry by the corre-

sponding measures.

Hypothesis symmetry. As to the hypothesis symmetry, it

demands that a measure obtains the same values, but of

the opposite sign, for rules E → H and E → ¬H , i.e.

c(H, E) = −c(¬H, E). Let us assign to the first rule a con-

tingency table with a, b, c and d frequencies, and to the lat-

ter a table with a′, b′, c′ and d′ frequencies. Then, the re-

quirement of the hypothesis symmetry can be formulated as

c(H, E) = f(a, b, c, d) = −c(¬H, E) = −f(a′, b′, c′, d′) =
−f(c, d, a, b). A column exchange in the contingency table

can be observed here, as a = c′, b = d′, c = a′ and d = b′.
Using the ‘parallelogram’ visualization technique, the ver-

ification of possession of hypothesis symmetry can be easily

done by shifting the left-hand side rhombus to the right, the

right-hand side rhombus to the left (which leads to the ex-

change of the rhombi, with their orientation unchanged) and

reversing the colour map. If the re-shifted and ‘recoloured’
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parallelogram is not the same as the original one, then the vi-

sualized measure does not possess the hypothesis symmetry.

Again, a thorough analysis of HS requires insight into the

tetrahedron, as potential counterexamples can also lie inside

the shape.

Figure 7 depicts the counterexamples to hypothesis sym-

metry of measure M(H, E), as the left-hand side and the

right-hand side rhombi differ even after reversing the colour

map.

On the other hand, there are no observable counterex-

amples to this property in Figs. 6 and 8–16 which, together

with additional analysis of the inside of the tetrahedrons, de-

termines the possession of the hypothesis symmetry by the

corresponding measures.

Evidence-hypothesis symmetry. Finally, the evidence-hy-

pothesis symmetry is defined as a composition of ES and

HS. It requires that a confirmation measure obtains the

same values for rules E → H and ¬E → ¬H , i.e.

c(H, E) = c(¬H,¬E). Associating a, b, c and d with

E → H and a′, b′, c′ and d′ with ¬E → ¬H , the require-

ment of the evidence-hypothesis symmetry can be formulated

as c(H, E) = f(a, b, c, d) = c(¬H,¬E) = f(a′, b′, c′, d′) =
f(d, c, b, a). A 180◦ rotation of the contingency table can be

observed here, as a = d′, b = c′, c = b′ and d = a′.

A measure in the ‘parallelogram’ visualization may be ver-

ified for this type of symmetry by rotating both the left-hand

side and the right-hand side rhombi by 180◦ about their re-

spective middle points. If any of the rotated rhombi is not the

same as the original one, then the visualized measure does not

possess the evidence-hypothesis symmetry. Naturally, a thor-

ough analysis of EHS requires insight into the tetrahedron,

as potential counterexamples can also lie inside the shape.

Again, just as with inversion symmetry, there is no need to

reverse the colour map.

In Figs. 6, 7 and 11–15 the counterexamples to evidence-

hypothesis symmetry are easily seen, as the rotated rhombi

are not the same as the original ones.

On the other hand, there are no observable counterexam-

ples to this property in Figs. 8–10 and 16 which, together

with additional analysis of the inside of the tetrahedrons, de-

termines the possession of the evidence-hypothesis symmetry

by the corresponding measures.

5. Conclusions

The paper presents a visual technique designed to assist and

enhance the analysis of interestingness measures, in particular

confirmation measures. The technique may be advantageous

in real-life situations, especially when time constraints impede

conducting in-depth, theoretical analyses of large numbers of

such measures (e.g. generated in an automatic way). Using a

data set that consists of an exhaustive and non-redundant set

of contingency tables (which constitute arguments to these

measures), a 3-dimensional tetrahedron is created and visu-

alized. This shape is constructed so that the positions of its

individual points represent the contingency tables, while the

colours of the points represent values of the visualized mea-

sure.

Dedicated analyses of particular colour patterns on this

tetrahedron allow to promptly perceive distinct properties of

the visualized measures. Basic properties are determined by

the location of undefined, extreme and intermediate values in

the tetrahedron, and the general forms of transitions between

these. Additionally, counterexamples to requirements and con-

ditions imposed by some specialized properties may easily be

found, ruling out certain properties from the set of properties

of the visualized measure. If such a condition requires an in-

sight into the interior of the tetrahedron, this may be carried

out using specialized views (including animation). Of course

it must be always kept in mind that the visual information is

only one way of analysing the interestingness measures, and,

as such, however useful, it may not convey answers to all

possible questions regarding measure properties.

To illustrate the introduced technique with real-life confir-

mation measures and real-life properties, a set of 12 popular

confirmation measures has been selected. They have been vi-

sually analysed in terms of 9 commonly used properties. The

performed analyses reveal that out of the considered proper-

ties the symmetries are most “visually-friendly”, in that they

generate colour patterns that are easiest to determine. Further

well supported properties are logicality and weak logicality.

It should be stressed that the visual analyses introduced

and described in this paper are universal enough to be applied

to basically all newly defined interestingness measures. Thus,

they greatly improve the general comprehension of the mea-

sures and, as such, may positively influence the way in which

they will be defined in the future.
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