Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Results of scientific researches show the trend of active using nitrides and borides of transition metals and their combination in developing protective materials. While single elements nitrides have been well studied, their multilayer modifications and combinations require more detailed study. Physical-mechanical properties and structural-phase state of multilayer coating according to the deposition conditions is an important task for the study. It will be the analysis of physical-mechanical and electrical properties of coatings based on refractory metals nitrides, their structure and phase composition and surface morphology depending on the parameters of condensation. It was established the structure and behavior of nano scale coatings based on refractory metals nitrides (Ti, Zr) depending on the size of nano grains, texture, stress occurring in coatings.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
133--139
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
- Technical University of Kosice, Faculty of Manufacturing Technologies with a Seat in Presov, Bayerova1, 080 01 Preˇsov, Slovakia
autor
- Technical University of Kosice, Faculty of Manufacturing Technologies with a Seat in Presov, Slovakia
autor
- Technical University of Kosice, Faculty of Manufacturing Technologies with a Seat in Presov, Slovakia
autor
- Technical University of Kosice, Faculty of Manufacturing Technologies with a Seat in Presov, Slovakia
autor
- Technical University of Kosice, Faculty of Manufacturing Technologies with a Seat in Presov, Slovakia
autor
- Faculty of Technical Systems and Energy Efficient Technologies, Sumy State University, Ukraine
Bibliografia
- [1] Pogrebnjak A.D., Dyadyura K.O., Gaponova O.P., Features of thermodynamic processes on contact surfaces of multicomponent nanocomposite coatings with hierarchical and adaptive behaviour, Metallofiz. Noveishie Tekhnol., 37, 7, 899–919, 2015, http://mfint.imp.kiev.ua/ru/abstract/v37/i07/0899.html.
- [2] Pogrebnjak A.D., Ivasishin O.M., Beresnev V.M., Arc-Evaporated Nanoscale Multilayer Nitride-Based Coatings for Protection Against Wear, Corrosion, and Oxidation, Usp. Fiz. Met., 17, 1, 1–28, 2016, https://doi.org/10.15407/ufm.17.01.001.
- [3] Musil J., Physical and mechanical properties of hard nanocomposite films prepared by reactive magnetron sputtering, Chapter 10 in the book “Nanostructured Hard Coatings”, 2005, Springer Science + Business Media,LCC,NewYork,NY10013,U.S.A.,407–463.
- [4] Samuelsson M., Lundin D., Jensen J., Raadu M.A., Gudmundsson J.T., Helmersson U., On the film density using high power impulse magnetron sputtering, Surf. Coat. Technol., 202, 2, 591, 2010, https://doi.org/10.1016/j.surfcoat.2010.07.041.
- [5] Hovorun T.P., Pylypenko O.V., Hovorun M.V., Dyadyura K.O., Methods of Obtaining and Properties of Wear-resistant Coatings Based on Ti and N and Ti, Al and N, J. Nano- Electron. Phys., 9, 2, 02026(7pp), 2017, https://doi.org/10.21272/jnep.9(2).02026.
- [6] Magnus F., Ingason A.S., Sveinsson O.B., Olafsson S., Gudmundsson J.T., Morphology of TiN thin films grown on SiO2 by reactive high power impulse magnetron sputtering, Thin Solid Films, 520, 5, 1621, 2011, https://doi.org/10.1016/ j.tsf.2011.07.041.
- [7] Vereshchaka A.A., Vereshchaka A.S., Mgaloblishvili O., Morgan M.N., Batako A.D., Nano-scale multilayered-composite coatings for the cutting tools, International Journal of Advanced Manufacturing Technology, Springer-Verlag, 72, 1–4, 1–15, 2014, https://doi.org/10.1007/s00170-014-5673-2.
- [8] Anders A., Metal Plasmas for the Fabrication of Nanostructures, Journ. Phys. Appl. Phys., 40, 2272, 2007, https://doi.org/10.1088/0022-3727/40/8/S06.
- [9] Straumal B.B., Vershinin N.F., Asrian A.A., Rabkin E., Kroeger R., Nanostructureed Vacuum Arc Deposited Titanium coatings, Mater. Phys. Mech., 5, 39, 2002, http://www.ipme.ru/ejournals/MPM/no 1502/straumal/straumal.pdf.
- [10] Wong M.-S., Hsiao G-Y., Yang Sh.-Yu, Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings, Surf. Coat. Technol., 133–134, 160–165, 2000, https://doi.org/10.1016/S02578972(00)00958-0.
- [11] Ulricha S., Ziebert C., Stqber M., Nold E., Holleck H., Gfken M., Schweitzer E., Schlogmacher P., Correlation between constitution, properties and machining performance of TiN/ZrN multilayers, Surf. Coat. Technol., 188–189, 331–337, 2004, https://doi.org/10.1016/j.surfcoat.2004.08.056.
- [12] Barshilia H.C., Acharya S., Ghosh M., Performance evaluation of TiAlCrYN nanocomposite coatings deposited using four-cathode reactive unbalanced pulsed direct current magnetron sputtering system, Vacuum., 85, 411, 2010, https://doi.org/10.1016/j.vacuum.2010.08.003.
- [13] Kovalev A., Wainstein D., Rashkovskiy A., Investigation of anomalous physical properties of multilayer nanolaminate (TiAl)N/Cu coatings by electron spectroscopy techniques, Surface and Interface Analysis, 42, 6–7, 1361–1363, 2010, https://doi.org/10.1002/sia.3290.
- [14] Gago R., Soldera F., Hübner R. et al., X-ray absorption near-edge structure of hexagonal ternary phases in sputter-deposited TiAlN films, Journal of Alloys and Compounds, 561, 87–94, 2013, https://doi.org/10.1016/j.jallcom.2013.01.130.
- [15] Meng Q., Wen M., Liu P., Zhang K., Zheng W., Correlation between interfacial electronic structure and mechanical properties of ZrN/SiNx films, Mater. Lett., 94, 61, 2013, https://doi.org/10.1016/j.matlet.2012.12.011.
- [16] Gassner G., Mayrhofer Ph., Kutschey K., Mitterer C., Kathrei M., Magnéli phase formation of PVD Mo-N and W-N coatings, Surf. Coat. Technol., 201, 3335, 2006, https://doi.org/10.1016/j.surfcoat.2006.07.067.
- [17] Svito I.A., Fedotova J.A., Miloslavljevic M., Zhukowski P., Koltunowicz N.T., Saad A., Kierczynski K., Fedotov A.K., Influence of sputtering atmosphere on hopping conductance in granular nanocomposite (FeCoZr)x(Al2O3)1-x films, J. Alloys Compd., 615, 1, S344, 2014, https://doi.org/10.1016/j.jallcom.2013.12.061.
- [18] Koltunowicz T.N., Zhukowski P., Bondariev V., Saad A., Fedotova J.A., Fedotov A.K., Miloslavljevic M., Kasiuk J.V., Enhancement of negative capacitance effect in (CoFeZr)x(CaF2)(100-x) nanocomposite films deposited by ion beam sputtering in argon and oxygen atmosphere, J. Alloys Compd., 615, 1, S361, 2014, https://doi.org/10.1016/j.jallcom.2013.12.125.
- [19] Braic M., Braic V., Balaceanu M., Pavelescu G., Vladescu A., Plasma deposition of alternate TiN/ZrN multilayer hard coatings, J. Optoelectron. Adv. Mater., 5, 1399–1404, 2003, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.556.7277&rep=rep1&type=pdf.
- [20] Poliak N.I., Anishchik V.M., Valko N.G., Karwat C., Kozak C., Opielak M., Mechanical Properties of Zn-Ni-SiO2 Coating Deposited under X-ray Irradiation, Acta Phys. Pol. A., 125, 6, 1415, 2014, 10.12693/APhysPolA.125.1415.
- [21] Abadias G., Michel A., Tromas C., Jaouen C., Dub S.N., Stress, interfacial effects and mechanical properties of nanoscale multilayered coatings, Surf. Coat. Technol., 202, 844–853, 2007, https://doi.org/10.1016/j.surfcoat.2007.05.068.
- [22] Chen S.-F., Kuo Y.-C., Wang C.-J., Huang S.H., Lee J.-W., Chan Y.-C., Chen H.-W., Duh J.-G., Hsieh T.-E., The effect of Cr/Zr chemical composition ratios on the mechanical properties of CrN/ZrN multilayered coatings deposited by cathodic arc deposition system, Surf. Coat. Technol., 231, 247–252, 2013, https://doi.org/10.1016/j.surfcoat.2012.03.002.
- [23] Musil J., Novak P., Hromadka M., Cerstvy R., Soukup Z., Savkova J., Mechanical and tribological properties of sputtered Mo-O-N coatings, Surf. Coat. Technol., 215, 386, 2013, https://doi.org/ 10.1016/j.surfcoat.2012.06.090.
- [24] Martev I.N., Dechev D.A., Ivano N.P., Uzunov Ts.D., Kashchieva E.P., Nanolaminated TiN/Mo2N hard multilayer coatings, J. Phys. Conf. Ser., 223, 1, 012, 2010, https://doi.org/10.1088/17426596/223/1/012019.
- [25] Kazdaev K.R., Abylkalykova R.B., Kveglis L.I., Regularities of Formation of the Ordered Structures in Molybdenum at Ion Implantation, J. Sib. Fed. Univ. Eng. Technol., 5, 560, 2012, http://elib.sfukras.ru/bitstream/2311/3198/1/09 Kazdaev.pdf.
- [26] Yen H.W., Huang C.Y., Yang J.R., Characterization of interphase-precipitated nanometer-sized carbides in a Ti–Mo-bearing steel, Scr. Mater., 61, 616, 2009, https://doi.org/10.1016/j.scriptamat.2009.05.036.
- [27] Machon D., Daisenberger D., Soignard E., Shen E., Kawashima T., Takayama-Muromachi E., McMillan P.F., High pressure – high temperature studies and reactivity of γ-Mo2N and δ-MoN, Phys. Stat. Solid. A. 2006, 203, 5, 831, 2006, https://doi.org/10.1002/pssa.200521008.
- [28] Zhang G., Tianxiang F., Tao W., Hailin C., Microstructure, mechanical and tribological behavior of MoNx/SiNx multilayer coatings prepared by magnetron sputtering, Appl. Surf. Sci., 274, 231, 2013, https://doi.org/10.1016/j.apsusc.2013.03.021.
- [29] Panda A., Duplak J., Jurko J. et al., New experimental expression of durability dependence for ceramic cutting tool, International Conference on Applied Mechanics and Materials (ICAMM 2012) Location: Sanya, PEOPLES R CHINA Date: Nov 24–25, 2012, Applied Mechanics and Materials I, PTS 1–3 Book Series: Applied Mechanics and Materials, 275–277, 2230–2236.
- [30] Jurko J., Dzupon M., Panda A. et al., Deformation of material under the machined surface in the manufacture of drilling holes in austenitic stainless steel, 8th International Scientific – Technical Conference of Material Engineering Practice, Chemicke Listy, 105, SI, Supplement: 4, S600–S602, 2011.
- [31] Panda A., Duplak J., Jurko J., Analytical expression of T-v(c) dependence in standard ISO 3685 for cutting ceramic, International Conference on Materials Engineering for Advanced Technologies (ICMEAT2011), Singapore, Materials Engineering for Advanced Technologies, PTS 1 and 2 Book Series: Key Engineering Materials, 480–481, 317–322, 2011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-770365ad-8c3f-476b-8b7b-61d7c690fc02