PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flow behavior in weakly permeable micro-tube with varying viscosity near the wall

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Weakly permeable micro-tubes are employed in many applications involving heat and/or mass transfer. During these processes, either solute concentration builds up (mass transfer) or steep change in temperature (heat transfer) takes place near the permeable wall causing a change in the viscosity of the fluid. Results of the present work suggest that such change in viscosity leads to a considerable alteration in the flow behavior, and the commonly assumed parabolic velocity profile no longer exists. To solve the problem numerically, the equation of motion was simplified to represent permeation of incompressible, Newtonian fluid with changing viscosity through a micro-tube. Even after considerable simplification, the accuracy of the results was the same as that obtained by previously reported results for some specific cases using rigorous formulation. The algorithm developed in the present work is found to be numerically robust and simple so that it can be easily integrated with other simulations.
Rocznik
Strony
16--21
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
  • Indian Institute of Technology Roorkee, Department of Chemical Engineering, Roorkee 247667, India
autor
  • Indian School of Mines, Department of Chemical Engineering, Dhanbad 826004, India
autor
  • Indian Institute of Technology Roorkee, Department of Chemical Engineering, Roorkee 247667, India
Bibliografia
  • 1. Olson, F. C. W. (1949). Flow through a pipe with a porous wall. J. Appl. Mech. 16(1), 53–54.
  • 2. Cheng, Y. C. & Hwang, G. J. (1995). Experimental studies of laminar flow and heat transfer in a one-porous-wall square duct with wall injection. Int. J. Heat Mass Tran. 38(18), 3475–3484. DOI: 10.1016/0017-9310(95)00037-A.
  • 3. Goosen, M. F. A., Sablani, S. S., Al-Hinai, H., Al-Obeidani, S., Al-Belushi, R. & Jackson, D. (2005). Fouling of reverse osmosis and ultrafiltration membranes: a critical review. Separ. Sci. Technol. 39(10), 2261–2297. DOI: 10.1081/SS-120039343.
  • 4. Xinhui, S., Liancun, Z., Xinxin, Z. & Jianhong, Y. (2011). Homotopy analysis method for the heat transfer in a asymmetric porous channel with an expanding or contracting wall. Appl. Math. Model. 35(9), 4321–4329. DOI: 10.1016/j.apm.2011.03.009.
  • 5. Ahmad, A. L., Lau, K. K., Bakar, M. A. & Shukor, S. A. (2005). Integrated CFD simulation of concentration polarization in narrow membrane channel. Comput. Chem. Eng. 29(10), 2087–2095. DOI: 10.1016/j.compchemeng.2005.06.001.
  • 6. Liang, Y. Y., Chapman, M. B., Weihs, G. F. & Wiley, D. E. (2014). CFD modelling of electro-osmotic permeate flux enhancement on the feed side of a membrane module. J. Membr. Sci., 470, 378–388. DOI: 10.1016/j.memsci.2014.07.039.
  • 7. Jun, C. L., Xiang J. Y. & Dong, Hu Y. (2015). CFD simulations of the fluid flow behavior in a spacer-filled membrane module. Membr. Water Treat. 6(6), 513–524. DOI: 10.12989/mwt.2015.6.6.513.
  • 8. Berman, A. S. (1953). Laminar flow in channels with porous walls. J. Appl. Phys. 24(9), 1232–1235. DOI: 10.1063/1.1721476.
  • 9. Yuan, S. W. & Finkelstein, A. B. (1956). Laminar pipe flow with injection and suction through a porous wall. Trans. ASME. 78, 719–724.
  • 10. Kozinski, A. A., Schmidt, F. P. & Lightfoot, E. N. (1970). Velocity Profiles in Porous-Walled Ducts. Ind. Eng. Chem. Fundam. 9(3), 502–505. DOI: 10.1021/i160035a033.
  • 11. Tilton, N., Martinand, D., Serre, E. & Lueptow, R. M. (2012). Incorporating Darcy’s law for pure solvent flow through porous tubes: Asymptotic solution and numerical simulations. AIChE J. 58(7), 2030–2044. DOI: 10.1002/aic.13823.
  • 12. Kim, A. S. & Lee Y.T. (2011). Laminar flow with injection through a long dead-end cylindrical porous tube: Application to a hollow fiber membrane. AIChE J. 57(8), 1997–2006. DOI: 10.1002/aic.12430.
  • 13. Bird, R. B., Stewart, W. E. & Lightfoot, E.N. (2002). Transport phenomena (2nd ed.). John Wiley & Sons.
  • 14. Vennela, N., Mondal, S., De, S. & Bhattacharjee, S. (2012). Sherwood number in flow through parallel porous plates (Microchannel) due to pressure and electroosmotic flow. AIChE J. 58(6), 1693–1703. DOI: 10.1002/aic.12713.
  • 15. Granger, J., Dodds, J. & Midoux, N. (1989). Laminar flow in channels with porous walls. The Chem. Eng. J. 42(3), 193–204. DOI: 10.1063/1.1721476.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-770328b8-0955-4963-aac2-9c4c9f0c3525
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.