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Flow behavior in weakly permeable micro-tube with varying viscosity near 
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Weakly permeable micro-tubes are employed in many applications involving heat and/or mass transfer. During these 
processes, either solute concentration builds up (mass transfer) or steep change in temperature (heat transfer) takes 
place near the permeable wall causing a change in the viscosity of the fl uid. Results of the present work suggest 
that such change in viscosity leads to a considerable alteration in the fl ow behavior, and the commonly assumed 
parabolic velocity profi le no longer exists. To solve the problem numerically, the equation of motion was simplifi ed 
to represent permeation of incompressible, Newtonian fl uid with changing viscosity through a micro-tube. Even 
after considerable simplifi cation, the accuracy of the results was the same as that obtained by previously reported 
results for some specifi c cases using rigorous formulation. The algorithm developed in the present work is found 
to be numerically robust and simple so that it can be easily integrated with other simulations.

Keywords: hollow-fi ber, micro-tube, permeation, algorithm, variable viscosity, velocity profi le, equation 
of motion, navier-stokes equation.

INTRODUCTION

      Laminar fl ow through porous tubes has been studied 
since a long time1. The internal laminar fl ow with fl uid 
injection or suction at the porous wall has been inves-
tigated extensively for many engineering applications, 
including the design and analysis of nuclear reactors, 
combustion chambers, food-drying processes, heat pipes, 
solar air collectors, fuel cell and purifi cation processes by 
reverse osmosis and ultrafi ltration2. In all such applica-
tions, the viscosity of the fl owing fl uid inside the tube no 
longer remains constant either due to the concentration 
polarization or due to the temperature gradient. However, 
in almost all theoretical investigations, the viscosity of 
fl owing fl uid has been assumed constant (particularly 
while solving the equation of motion) for the sake of 
simpler model equations3–4. In the present work, the 
two-dimensional steady-state equation of motion has 
been simplifi ed in terms of constant density and low 
radial velocity with varying local viscosity to predict the 
velocity profi le numerically. 

Although, many CFD (computational fl uid dynamic) 
based software are readily available for investigating the 
fl ow through porous tubes under various conditions5–7, 
many times these software work as a black-box and 
takes abnormally longer time to converge. Considering 
this, in the present work, a simplifi ed, fast, and accurate 
numerical tool has been developed that can be used 
for peeping into the experimental survey to estimate 
behaviors of any parameter quantitatively. These tools 
can also be used to study the effects of variation in the 
properties of fl uids, and the effect of channel geometry 
in a fl exible but defi ned way. 

Classical Papers of Berman8, Yuan and Finkelstein9, 
and Kozinski et al.10 are the basis of most of these CFD 
based analyses of fl ow through porous tube or duct. 
These authors presented analytical solutions based on 
perturbation treatment of fully developed laminar fl ow 
with the parabolic velocity profi le in rectangular and 
tubular channels (assuming constant fl uid properties) 
by solving steady state two-dimensional Navier-Stokes 

equation (i.e., the equation of motion with constant 
density and constant viscosity) along with the equation 
of continuity. Also, these authors assumed that the ra-
dial velocity profi le was invariant in the axial direction 
since magnitude of the permeate fl ow rate through 
the tube/channel wall (Qw) is so small that it can be 
approximated by a constant average value all along the 
length. Correlations for velocity profi les obtained by 
these authors (or their extension) are widely used for 
the simulation of channels having small dimensions11–12. 
The major drawback of these formulations is that these 
cannot handle effects of the changing viscosity of fl owing 
fl uid due to the concentration polarization (in the case 
of mass transfer problems) or due to the temperature 
gradient (in heat transfer problems). Considering this, 
in the present work, the steady state equation of motion 
is being used for developing a numerical tool to predict 
velocity profi le inside a tubular micro-channel with va-
rying viscosity of the fl uid.

MODELING FLOW THROUGH TUBULAR HOLLOW-
-FIBERS 

In cases of a hollow-fi ber, the equation of motion can be 
expanded in the 2-D cylindrical coordinate system giving 
the x- and r- component in terms of stress tensor as13:

 (1a)

and

 (1b)

respectively. The continuity equation in expanded form 
becomes

 (2)

With the known behavior of processes with weak per-
meation and some simplifying assumptions, equations (1a) 
and (1b) can be simplifi ed to a great extent. In cases of 
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constant value of permeation throughout the length of 
the tube, the rate of change of radial velocity in the axial 
direction, ∂v/∂x, is zero. Also, due to the weak inward 
or outward fl ow of permeate, v∂v/∂r is negligibly small. 
Therefore, both the terms on the left hand side of the 
Eq. (1b) can be neglected. 

Further, since the radial velocity is small, fl uid momen-
tum in the radial direction (at a particular cross-section 
inside the tube) can be assumed to be insignifi cant com-
pared to the axial momentum. This ultimately makes all 
terms on the right hand side of the Eq. (1b) insignifi cant 
indicating that pressure at a particular section of the 
permeating tube can be assumed to be constant (i.e., 
∂p/∂r≈0) which supports the simplifying assumption 
used in many cases of weak permeation14. These indicate 
that for fl uid dynamic studies inside a tubular channel 
with weak permeation, only the axial component of the 
momentum equation and the equation of continuity is 
suffi cient. 

Secondly, in Eq. (1a) representing axial force-momen-
tum balance, the transfer of axial momentum in radial 
direction takes place in two ways (i) due to viscous 
shear force in the axial direction, and (ii) due to bulk 
movement (convection) of fl uid in the radial direction. 
Because of the very small value of the radial velocity, 
it can be easily visualized that there is no appreciable 
contribution of this radial velocity towards the convective 
transfer of axial momentum in the radial direction as 
compared to the axial momentum transfer in the radial 
direction due to viscous forces (molecular momentum 
transfer). Thus, the second term on the left hand side 
of the Eq. (1a) becomes less signifi cant. Further, in 
a tubular permeable tube of uniform cross-section, the 
rate of change of axial velocity in the axial direction, 
∂u/∂x is expected to be negligibly small (since inward or 
outward permeation rate is several orders of magnitude 
less than the axial fl ow rate). Thus both the terms on 
the left hand side of the Eq. (1a) vanishes. Furthermore, 
for an incompressible fl uid fl owing in a tube of uniform 
cross-section, the normal stress τxx becomes zero. With 
these, the equation of motion (Eq. 1a) for a weakly 
permeable tube (with a uniform cross-sectional area and 
incompressible fl uid) reduces to:

 (3)

By making a force balance on the volume element of 
radius r (Fig. 1), the shear stress τrx is given by:

 (4)

After differentiating Eq. (4) with respect to r, and 
substituting ∂p/∂r=0, we get

 (5)

Substituting Eq. (5) in the Eq. (3) and rearranging we 
get the greatly simplifi ed equation of motion:

 (6)

Equation (6) is the basis of the well-known Hagen-
Poiseuille equation in which fl uid viscosity is taken as 
constant. One cannot integrate Eq. (6) unless viscosity 

as a function of radial position is known. In most of 
the practical cases of fl ow with fl uid injection or suction 
through the porous wall, the viscosity of fl owing fl uid 
does not remain constant either due to concentration 
polarization or due to changing temperature, which 
themselves depend on velocity profi le. This makes it 
diffi cult to solve the equation even numerically. 

On the other hand, if viscosity is constant, Hagen-
Poiseuille equation is applicable even in the case of fl ow 
through a circular tube with permeation, provided Qx is 
constant (or at least nearly constant). Thus, in case of 
very small Δx (Fig. 1), i.e., only in a small length seg-
ment of the micro-tub, it can be assumed that there is 
no appreciable change in axial volumetric fl ow rate (Qx) 
of liquid within this element, and there exists an average 
value of viscosity, μeff (applicable only to this volume 
element), that can be used in the Hagen-Poiseuille 
equation such that

 (7)

where Qx can be taken as the overall volumetric fl ow 
rate of fl uid entering the micro-tube section shown in 
Figure 1, and μeff is the effective viscosity of the fl uid 
that can be determined as follows.

Substituting ∂p/∂x from the above Eq. (7) into Eq. (6) 
and introducing shear stress in terms of Newton’s law 
of viscosity and rearranging we get:

  (8)

The above equation can be solved with the boundary 
condition u(x,R)=0 within one axial volume element of 
width Δx (Fig. 1) giving: 

 (9)

Upon integration of Eq. (9) from the wall of the tube 
(r = R; u = 0) to a distance r from the center where 
the axial velocity u is to be evaluated, gives:

  (10)

Now, the overall volumetric fl ow rate of the fl uid can 
be obtained by integrating Eq. (10) as follows:

Figure 1. Pressure and shear forces on an integral volume 
element of radius r (shaded cylindrical element) 
inside a tube section of length Δx, with a differential 
volume element of thickness Δr
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  (11)

Substituting Eq. (7) and rearranging we get

  (12)

In a practical situation, however, the viscosity of a fl u-
id depends on the local conditions of temperature and 
composition; therefore, a suitable function representing 
the variation of viscosity in terms of r that can be used 
for integrating Eq. (12) may not be known. In such ca-
ses, the integral in the denominator of Eq. (12) can be 
obtained numerically in terms of as a function of local 
conditions using the following numerical integration 
based on the trapezoidal rule.

  (13)

Where, N is the total number of integral (cylindrical) 
volume elements of nominal radius rj (j=1,2,…N) as 
shown in Figure 1, and is the local viscosity of the fl uid 
at the centre of a differential volume element bounded 
between radii rm-1 and rm. 

Thus the simplifi ed momentum equation (Eq. 6) and 
the equation of continuity (Eq. 2) are required to be 
solved for the CFD analysis a micro-tube, subject to 
the conditions that:

(i) The fl owing fl uid is Newtonian,
(ii) Fluid is incompressible,

(iii) Wall permeation is weak, 
(iv) Wall permeability is constant along the length,
(v) Tube length, Δx, is small enough so that 2.π.R.Δx.

vw/Qin<< 1,
(vi) No-slip condition at the tube wall, 
(vii) Cross-sectional area of the tube is uniform 

throughout, 
(viii) Considering these, a long micro-tube of length L 

can be assumed to be made of small elements of length 
Δx such that conditions (iv) and (v) are satisfi ed. Solu-
tion for the entire tube length can be achieved sequen-
tially, starting from the inlet. A brief discussion on the 
algorithm that can be adopted to solve these equations 
sequentially is presented in Table 1.

RESULTS AND DISCUSSION

To validate the outcome of the proposed algorithm, 
a micro-tube of radius (R) 0.0007 m, length (L) 0.2 m, 
permeation velocity (vw) 0.0001 m/s and feed velocity 
(uo at x = 0) of 0.5 m/s is assumed. The viscosity of the 
feed, μ0 is taken as 0.001 Pa.s. 

To execute the algorithm, the micro-tube is discretized 
in the cylindrical volume elements of thickness Δr and 
length Δx such that 2 . π . R . Δx . vw/Qin ≤ 0.0001. The 
grid size independency of the computer code (including 
Eq. 13 to estimate μeff) was tested for constant viscosity 
μ(r) = μ0 at all r. Several numbers of differential volume 
elements were tried; three of them (N = 25, 100, and 
500) are presented in Figure 2. It is evident from the 
fi gure that for 100 and 500 numbers of differential volume 
elements, results are overlapping. This indicates that 100 
differential volume elements in the radial direction are 

Table 1. Solution algorithm
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suffi cient for the present work. The results obtained by 
Granger et al.15, with constant viscosity (μ(r) = μ0) are 
also compared in this graph. An excellent agreement 
between the present results (with N ≥ 100) and those 
of Granger et al.15 is an evidence of the fact that the 
terms (such as radial component of the equation of 
motion, ∂p/∂r, v∂v/∂r, ∂v/∂x, etc.) which were ignored 
using simplifying assumptions has no signifi cant effect 
on the velocity components and these terms can be 
ignored safely. 

To study the effect of changing viscosity of the fl uid, 
three types of viscosity variation were considered. In the 
fi rst case, viscosity increases sharply near the wall and 
remains almost constant in the core of fl owing fl uid. 
This case is similar to ultrafi ltration and reverse osmosis 
in which viscosity near the wall may be many orders of 
magnitude higher than the bulk viscosity of the fl uid. The 
other two cases resemble permeation with heat transfer, 
where the change in viscosity may be less severe, but 
extends deeper inside the core of the fl owing fl uid (Fig. 
3a). In reality, such viscosity variations are caused by the 
variation in concentration or temperature which can be 
predicted by introducing more terms in model equation 
representing heat and mass transfer. However, to avoid 
further complexity, and to see the effect of change in 
viscosity on the fl ow characteristics, the viscosity of fl uid 
as a function of radial position is defi ned directly by 
assuming following hypothetical equation:

 (14)

A steep increase in viscosity near the tube wall is 
obtained by substituting β = 20 and n = 32 in equa-
tion (14), whereas the moderate increase or decrease 
in viscosity is predicted by putting β = 5 and –0.7, and 
n = 7 and 4, respectively (Fig. 3a). 

In all three cases of viscosity variation, permeation 
velocity, vw, is taken as constant all along the tube length 
(irrespective of viscosity of the fl uid near the permeable 
surface). The resultant velocity profi les obtained by solv-
ing the model equations using the algorithm shown in 
Table 1 are interesting. In Fig. 3, the x-axis represents 
dimensionless radial distance measured from the centre 

of the tube. The variation in axial velocity is shown in 
Figure 3b. Dimensionless radial velocity (v/vw) and the 
dimensionless radial volumetric fl ow rate (Q/Qw) are 
plotted on the primary and secondary vertical axis of 
Figure 3c, respectively. The curves for the case of con-
stant viscosity are represented by the solid line. 

Evidently, the velocity profi les in case of variable viscos-
ity (dashed, dotted and dash-dot lines) are signifi cantly 
different from the condition when the viscosity is constant 
at (solid line). Also, the parabolic velocity profi le, which 
is assumed in most of the theoretical analysis, cannot be 
applied in processes where change in viscosity of the fl uid 
is expected. It is also interesting to note that even in the 
case in which viscosity change is restricted in a region 
close to the wall (dotted line in Figure 3 representing 
steep change in viscosity), its effect on the axial velocity 
extends from tube wall to center of the tube.

As a result of increased viscosity near the permeable 
surface, tangential velocity, u, is signifi cantly less than 
that predicted by a parabolic profi le. Similarly, in the 
case of decreasing viscosity (say due to increase in tem-
perature), the tangential velocity near the wall is higher 
than expected, however, in the central core, velocity is 
signifi cantly low. This, in most of the cases, will lead to 
an adverse effect on heat and mass transfer. In cases of 

Figure 3. Assumed viscosity variation inside the micro-tube 
(a), Effect of change in viscosity on axial velocity 
profi le (b), and dimensionless radial velocity and 
dimensionless volumetric fl ow rate (c). 

Figure 2. Radial velocity, and radial fl ow inside a micro-tube 
of radius R (=0.0007 m), for different size of vol-
ume element Δr (= R/N; where N is the number 
of volume element in radial direction 25, 100 and 
500, respectively)
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Qx  Axial volumetric fl ow rate of fl uid at an axial 
 position x (m3 s–1)
Qw  Volumetric fl ow rate of the permeate through 
 tube wall (m3 s–1)
R  Radius of micro tube (m)
r  Radial distance measured from the centre of the 
 micro-tube (m)
u  Local axial velocity (m s–1)
uin  Average axial inlet velocity entering a volume 
 element (m s–1)
uout  Average axial inlet velocity exiting a volume 
 element (m s–1)
v  Local radial velocity (m s–1)
V Velocity vector (m s–1)
vw  Permeation velocity at the tube wall (m s–1)
x  Axial distance measured from the inlet of the 
 micro-tube (m)
β  Constant used in Equation 14
ΔP Pressure difference (kPa)
Δr  Thickness of a differential volume element in 
 radial direction (m)
Δx  Length of the volume element in axial direction 
 (m)
μ0  Viscosity of the fl uid at the inlet conditions  
 (Pa . s)
μeff  Effective viscosity of the fl uid at a fi xed axial 
 position (Pa . s)
μ(r)  Fluid viscosity at a distance r from the centre 
 (Pa . s)
τ Stress tensor (N m–2) 
τrx  Shear stress acting on r-face in x-direction 
 (N m–2)
τxx  Normal stress acting on x-face in x-direction 
 (N m–2)
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