Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a low power highly sensitive Triple Metal Surrounding Gate (TM-SG) Nanowire MOSFET photosensor is proposed which uses triple metal gates for controlling short channel effects and III–V compound as the channel material for effective photonic absorption. Most of the conventional FET based photosensors that are available use threshold voltage as the parameter for sensitivity comparison but in this proposed sensor on being exposed to light there is a substantial increase in conductance of the GaAs channel underneath and, thereby change in the subthreshold current under exposure is used as a sensitivity parameter (i.e., Iillumination/IDark). In order to further enhance the device performance it is coated with a shell of AlxGa1-x As which effectively passivates the GaAs surface and provides a better carrier confinement at the interface results in an increased photoabsorption. At last performance parameters of TM-SG Bare GaAs Nanowire MOSFET are compared with TM-SG core-shell GaAs/AlGaAs Nanowire MOSFET and the results show that Core-Shell structures can be a better choice for photodetection in visible region.
Wydawca
Czasopismo
Rocznik
Tom
Strony
141--148
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
- VLSI Design Lab, Department of ECE, NIT Jalandhar, Punjab, 144011, India
autor
- VLSI Design Lab, Department of ECE, NIT Jalandhar, Punjab, 144011, India
autor
- VLSI Design Lab, Department of ECE, NIT Jalandhar, Punjab, 144011, India
Bibliografia
- [1] A. Kranti, S. Kranti, R.S. Haldar, Analytical model for threshold voltage and I–V characteristics of fully depleted short channel cylindrical/surrounding gate MOSFET, Microelectron. Eng. 56 (3) (2001) 241–259.
- [2] S.-H. Oh, D. Monroe, J.M. Hergenrother, Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs, Electron Device Lett., IEEE 21 (9) (2000) 445–447.
- [3] A. Kloes, M. Schwarz, T. Holtij, A new physics-Based explicit compact model for lightly doped short-Channel triple-Gate SOI MOSFETs, IEEE Trans. Electron Devices 59 (2) (2012) 349–358.
- [4] D. Sharma, S.K. Vishvakarma, Precise analytical model for short channel cylindrical gate (CylG) gate-all-around (GAA) MOSFET, Solid-State Electron. 86 (2013) 68–74.
- [5] L. Zhang, Ch. Ma, J. He, X. Lin, M. Chan, Analytical solution of subthreshold channel potential of gate underlap cylindrical gate-all-around MOSFET, Solid-State Electron. 54 (8) (2010) 806–808.
- [6] R. Gautam, M. Saxena, R.S. Gupta, M. Gupta, Two dimensional analytical subthreshold model of nanoscale cylindrical surrounding gate MOSFET including impact of localised charges, J. Comput. Theor. Nanosci. 9 (4) (2012) 602–610.
- [7] S.-H. Oh, D. Monroe, J.M. Hergenrother, Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs, Electron Device Lett., IEEE 21 (9) (2000) 445–447.
- [8] S.K. Gupta, S. Baishya, Modeling and simulation of triple metal cylindrical surround gate MOSFETs for reduced short channel effects, Int. J. Soft Comput. Eng. (IJSCE) 2 (2) (2012) 214–221.
- [9] P. Ghosh, S. Haldar, R.S. Gupta, M. Gupta, Analytical modeling and simulation for dual metal gate stack architecture (DMGSA) cylindrical/surrounded gate MOSFET, JSTS 12 (4) (2012) 458–466.
- [10] E. Gnani, S. Reggiani, M. Rudan, G. Baccarani, Effects of high-K (HfO 2) gate dielectrics in Double-Gate and cylindrical-nanowire FETs scaled to the ultimate technology nodes, IEEE Trans. Nanotechnol. 6 (1) (2007) 90–96.
- [11] T.K. Chiang, M.L. Chen, A new analytical threshold voltage model for symmetrical double-gate MOSFETs with high-k gate dielectrics, Solid-State Electron. 51 (3) (2007) 387–393.
- [12] P. Kasturi, M. Saxena, M. Gupta, R.S. Gupta, Dual-Material double-layer gate stack SON MOSFET: a novel architecture for enhanced analog performance – part II: impact of gate-dielectric material engineering, IEEE Trans. Electron Devices 55 (1) (2008) 382–387.
- [13] Y. Pratap, P. Ghosh, S. Haldar, R.S. Gupta, M. Gupta, An analytical subthreshold current modeling of cylindrical gate all around (CGAA) MOSFET incorporating the influence of device design engineering, Microelectron. J. 45 (4) (2014) 408–415.
- [14] M. Jagadesh Kumar, Ali A. Orouji, H. Dhakad, New dual-material SG nanoscale MOSFET: analytical threshold-voltage model, IEEE Trans. Electron Devices 53 (4) (2006) 920–923.
- [15] T.K. Chiang, A new compact subthreshold behavior model for dual-material surrounding gate (DMSG) MOSFETs, Solid-State Electron. 53 (5) (2009) 490–496.
- [16] H.-K. Wang, S. Wu, T.-K. Chiang, M.-S. Lee, A new two-dimensional analytical threshold voltage model for short-channel triple-material surrounding-gate metal–oxide–semiconductor field-effect transistors, J. Appl. Phys. 51 (5R) (2012) 054301.
- [17] O. Hayden, R. Agarwal, Ch.M. Lieber, Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection, Nat. Mater. 5 (5) (2006) 352–356.
- [18] E.C. Garnett, P. Yang, Silicon nanowire radial p- n junction solar cells, J. Am. Chem. Soc. 130 (29) (2008) 9224–9225.
- [19] L.C. Voon, Y. Zhang, B. Lassen, M. Willatzen, Q. Xiong, P.C. Eklund, Electronic properties of semiconductor nanowires, J. Nanosci. Nanotechnol. 8 (1) (2008) 1–26.
- [20] T. Savage, A.M. Rao, Thermal properties of nanomaterials and nanocomposites, in: Thermal Conductivity, Springer, US, 2004, pp. 261–284.
- [21] N. Elfström, R.t Juhasz, I. Sychugov, T. Engfeldt, A. Eriksson Karlström, J. Linnros, Surface charge sensitivity of silicon nanowires: size dependence, Nano Lett. 7 (9) (2007) 2608–2612.
- [22] C. Soci, A. Zhang, X.-Y. Bao, H. Kim, Yuhwa Lo, Deli Wang, Nanowire photodetectors, J. Nanosci. Nanotechnol. 10 (3) (2010) 1430–1449.
- [23] C.W. Liu, W.T. Liu, M.-H. Lee, W.S. Kuo, B.-C. Hsu, A novel photodetector using MOS tunneling structures, Electron Device Lett., IEEE 21 (6) (2000) 307–309.
- [24] M.D. Brubaker, P.T. Blanchard, J.B. Schlager, A.W. Sanders, A. Roshko, S.M. Duff, J.M. Gray, V.M. Bright, N.A. Sanford, K.A. Bertness, On-chip optical interconnects made with gallium nitride nanowires, Nano Lett. 13 (2) (2013) 374–377.
- [25] P. Krogstrup, H.I. Jørgensen, M. Heiss, O. Demichel, J.V. Holm, M. Aagesen, J. Nygard, A. MFontcubertai Morral, Single-nanowire solar cells beyond the Shockley-Queisser limit, Nat. Photonics 7 (4) (2013) 306–310.
- [26] E.G. Marin, F.G. Ruiz, V. Schmidt, A. Godoy, H. Riel, F. Gámiz, Analytic drain current model for III–V cylindrical nanowire transistors, J. Appl. Phys. 118 (4) (2015) 044502.
- [27] X. Jiang, S.N. QihuaXiong, F. Qian, Y. Li, Ch.M. Lieber, InAs/InP radial nanowire heterostructures as high electron mobility devices, Nano Lett. 7 (10) (2007) 3214–3218.
- [28] S.A. Dayeh, C. Soci, X.-Y. Bao, D. Wang, Advances in the synthesis of InAs and GaAs nanowires for electronic applications, Nano Today 4 (4) (2009) 347–358.
- [29] O. Demichel, M. Heiss, J. Bleuse, H. Mariette, A.F. iMorral, Impact of surfaces on the optical properties of GaAs nanowires, Appl. Phys. Lett. 97 (20) (2010) 201907.
- [30] E.M. Gallo, G. Chen, M. Currie, T. McGuckin, P. Prete, N. Lovergine, B. Nabet, J.E. Spanier, Picosecond response times in GaAs/AlGaAs core/shell nanowire-based photodetectors, Appl. Phys. Lett. 98 (24) (2011) 241113.
- [31] A. Bhattacharyya, R. Ramesh, Nanoscale circuit implementation using tri-metal gate engineered nanowire MOSFET with gate stack for analog/RF applications, J. Comput. Electron. 16 (1) (2017) 155–161.
- [32] R. Ragi, R.V. Tayette da Nobrega, U. Rondina Duarte, M. Araujo Romero, An explicit quantum-mechanical compact model for the IV characteristics of cylindrical nanowire MOSFETs, IEEE Trans. Nanotechnol. 15 (4) (2016) 627–634.
- [33] T.K. Chiang, A new two dimensional subthreshold behavior model for the short-channel asymmetrical dual-material double-gate (ADMDG) MOSFETs, Microelectron. Reliab. 49 (2009) 693–698.
- [34] Manual, ATLAS User’s. 3-D Device Simulator, SILVACO International, Version 5.14.0, 2010.
- [35] S. Thunich, L. Prechtel, D. Spirkoska, G. Abstreiter, A. FontcubertaiMorral, A.W. Holleitner, Photocurrent and photoconductance properties of a GaAs nanowire, Appl. Phys. Lett. 95 (8) (2009) 083111.
- [36] P. Chakrabarti, N.L. Shrestha, S. Srivastava, V. Khemka, An improved model of ion-implanted GaAs OPFET, IEEE Trans. Electron Devices 39 (9) (1992) 2050–2059.
- [37] SOPRA infobase, http://refractiveindex.info.
- [38] M.L. Simpson, M. Nance Ericson, G.E. Jellison Jr, William B. Dress, Alan L. Wintenberg, M. Bobrek, Application specific spectral response with CMOS compatible photodiodes, IEEE Trans. 46 Electron Devices 5 (1999) 905–913.
- [39] R. Gautam, M. Saxena, R.S. Gupta, M. Gupta, Analytical model of double gate MOSFET for high sensitivity low power photosensor, JSTS 13 (5) (2013) 500–510.
- [40] X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, Ch. Couteau, C. Soci, GaAs/AlGaAs nanowire photodetector, Nano Lett. 14 (5) (2014) 2688–2693.
- [41] F. Omnès, E. Monroy, E. Munoz, J.-L. Reverchon, Wide bandgap UV photodetectors: a short review of devices and applications, in: Integrated Optoelectronic Devices 2007, International Society for Optics and Photonics, 2007, pp. 64730E.
- [42] K. Liu, M. Sakurai, M. Aono, ZnO-based ultraviolet photodetectors, Sensors 10 (9) (2010) 8604–8634.
- [43] J. Robertson, B. Falabretti, Band offsets of high K gate oxides on III-V semiconductors, J. Appl. Phys. 100 (1) (2006) 4111.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7702912a-31bf-4283-95e8-3c53772ba36d