PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultimate strengths of FRC rectangular columns subjected to simulated seismic loading: Experimental database and new models

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
While there are many experimental investigations focusing on seismic behaviour of fibre reinforced concrete (FRC) columns, the studies regarding the accuracies and conservativeness of existing seismic strength models of FRC columns are limited. This paper presents a seismic research database of 322 FRC columns obtained from a comprehensive literature investigation. The characteristic of the database and the effects of main variables on the seismic strengths of FRC columns are analyzed in detail, the accuracies of existing strength models of FRC column are also examined as well. In addition, using the database, considering the effects of fibre and other structural factors on FRC columns, Priestley et al. shear and CFB-FIP moment models are modified respectively. Results show that the two proposed strength models both present better evaluation than other models. On the other hand, a detailed method for assessing the potential failure mode of FRC column subjected to seismic loads is also suggested using the two strength models. The comparative results verify the feasibilities and accuracies of the assessment method in FRC columns.
Rocznik
Strony
96--120
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • CERG, Faculty of Engineering Technology, Hasselt University, Diepenbeek, Belgium
autor
  • CERG, Faculty of Engineering Technology, Hasselt University, Diepenbeek, Belgium
Bibliografia
  • [1] S.J. Foster, M.M. Attard, Strength and ductility of fiber-reinforced high-strength concrete columns, Journal of Structural Engineering 127 (1) (2001) 28–34.
  • [2] K.E. Caballero-Morrison, J.L. Bonet, J. Navarro-Gregori, P. Serna-Ros, An experimental study of steel fiber-reinforced high-strength concrete slender columns under cyclic loading, Engineering Structures 57 (2013) 565–577.
  • [3] H. Kimura, Y. Ishikawa, A. Kambayashi, H. Takatsu, Seismic behavior of 200 MPa ultra-high-strength steel-fiber reinforced concrete columns under varying axial load, Journal of Advanced Concrete Technology 5 (2) (2007) 193– 200.
  • [4] W.M. Li, J.Y. Xu, Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading, Materials Science and Engineering: A 505 (1) (2009) 178–186.
  • [5] S.J. Foster, On behavior of high-strength concrete columns: cover spalling, steel fibers, and ductility, ACI Structural Journal 98 (4) (2001) 583–589.
  • [6] G. Campione, M. Fossetti, M. Papia, Behavior of fiber-reinforced concrete columns under axially and eccentrically compressive loads, ACI Structural Journal 107 (3) (2010) 272– 281.
  • [7] H. Aoude, W.D. Cook, D. Mitchell, Behavior of columns constructed with fibers and self-consolidating concrete, ACI Structural Journal 106 (3) (2009) 349–357.
  • [8] P. Paultre, R. Eid, Y. Langlois, Y. Lévesque, Behavior of steel fiber-reinforced high-strength concrete columns under uniaxial compression, Journal of Structural Engineering – ASCE 136 (10) (2010) 1225–1235.
  • [9] P.H. Bischoff, Tension stiffening and cracking of steel fiber-reinforced concrete, Journal of Materials in Civil Engineering 15 (2) (2003) 174–182.
  • [10] T. Ji, Z.Z. Qian, Effects of steel fiber concrete and width of flat beams on seismic behavior of flat beam-column joint, China Civil Engineering Journal 33 (3) (2000) 42–47 [in Chinese].
  • [11] American Concrete Institute (ACI 318), Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary, American Concrete Institute, Detroit, Michigan, 2008.
  • [12] European Committee for Standardization, Eurocode 8: Design of Structures for Earthquake Resistance – Part 1: General Rules, Seismic Actions and Rules for Buildings, EN 1998-1, 2004.
  • [13] K.E. Caballero-Morrison, J.L. Bonet, J. Navarro-Gregori, P. Serna-Ros, Behaviour of steel fibre reinforced normal strength concrete slender columns under cyclic loading, Engineering Structures 39 (2012) 162–175.
  • [14] American Concrete Institute, Manual of Concrete Practice, ACI, 2002.
  • [15] Y.P. Sun, K. Sakino, T. Yoshioka, Flexural behavior of high strength RC columns confined by rectilinear reinforcement, Journal of Structural Construction Engineering 486 (1996) 95– 106.
  • [16] MC90, CEB-FIP, Design of Concrete Structures, CEB-FIP Model Code 1990, fib Fédération internationale du béton, 1993.
  • [17] Architectural Institute of Japan, Design Guidelines for Earthquake Resistant Reinforced Concrete Buildings Based on Inelastic Displacement Concept, Architectural Institute of Japan, Tokyo, 1997.
  • [18] ASCE/ACI Joint Task Committee 426, Shear Strength of Reinforced Concrete Members, Journal of Structural Engineering – ASCE 99 (6) (1973) 1091–1187.
  • [19] Japan Society of Civil Engineers, Design Guidelines of Steel Fiber Reinforced Concrete Pillar Member (Draft), Japan Society of Civil Engineers, 1999 [in Japanese].
  • [20] H.H. Lee, Shear strength and behavior of steel fiber reinforced concrete columns under seismic loading, Engineering Structures 29 (7) (2007) 1253–1262.
  • [21] M.J. Nigel Priestley, R. Verma, Y. Xiao, Seismic shear strength of reinforced concrete columns, Journal of Structural Engineering 120 (8) (1994) 2310–2329.
  • [22] L. Huang, L.H. Xu, Y. Chi, H.R. Xu, Experimental investigation on the seismic performance of steel–polypropylene hybrid fiber reinforced concrete columns, Construction and Building Materials 87 (2015) 16–27.
  • [23] T. Nagasaka, T. Yanase, Study on shearing characteristics of steel fiber reinforced concrete structural members: Part 1 and Part 2, in: Annual Meeting Architectural Institute of Japan, 1986 [in Japanese].
  • [24] AIJ, Standard for Structural Calculation of Reinforced Concrete Structures, Architectural Institute of Japan (AIJ), 1999, pp. 136–153.
  • [25] J.R. Tang, C.B. Hu, K.J. Yang, Y.C. Yan, Seismic behavior and shear strength of framed joint using steel-fiber reinforced concrete, Journal of Structural Engineering – ASCE 118 (2) (1992) 341–358.
  • [26] M. Berry, M. Parrish, M. Eberhard, PEER Structural Performance Database, 2004 http://nisee.berkeley.edu/spd/.
  • [27] E. Makitani, K. Machida, H. Gunjima, I. Hagiwara, Dynamic effect on shearing behavior of steel fiber reinforced concrete columns, Proceeding of Japan Concrete Institute (1985) 361– 364 [in Japanese].
  • [28] G.C. Cai, Y.P. Sun, T. Takeuchi, J.W. Zhang, Proposal of a complete seismic shear strength model for circular concrete columns, Engineering Structures 100 (2015) 399–409.
  • [29] M.J. Kowalsky, M.J.N. Priestley, Improved analytical model for shear strength of circular reinforced concrete columns in seismic regions, ACI Structural Journal 97 (3) (2000) 388–396.
  • [30] Y. Tanaka, Y. Kaneko, H. Yashiro, Experimental studies on the shear failure properties of steel fiber reinforced concrete short columns loaded by show reversals, Proceeding of Japan Concrete Institute (1984) 517–520 [in Japanese].
  • [31] M. Hara, T. Nagasaka, M. Sugiyama, Mixing Effect of Steel Fibers in the Reinforced Concrete Columns Subjected to Repeated Horizontal Load, Part 1, Research Report at Kanto Branch of AIJ, 1982, pp. 157–160 [in Japanese].
  • [32] X.W. Liang, L. Kang, J.L. Che, M.K. Deng, Experiments and analysis of seismic behavior of columns with fiber-reinforced concrete in bottom region, Engineering Mechanics 32 (9) (2013) 243–250 [in Chinese].
  • [33] M.J.N. Priestley, R. Park, Strength and ductility of concrete bridge columns under seismic loading, ACI Structural Journal 84 (1) (1987) 61–76.
  • [34] M.H. Harajli, Effect of span-depth ratio on the ultimate steel stress in unbonded prestressed concrete members, ACI Structural Journal 87 (3) (1990) 305–312.
  • [35] T.Y. Lim, P. Paramasivam, S.L. Lee, Shear and moment capacity of reinforced steel-fibre-concrete beams, Magazine of Concrete Research 39 (140) (1987) 148–160.
  • [36] R. Park, T. Paulay, Reinforced concrete structures, John Wiley & Sons, New York, 1975.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-770053ef-103f-4bc3-b0a1-e65b523f99e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.