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An implicit constitutive relation is proposed for elastic bodies, when the
gradient of the displacement is assumed to be very small, and as a result the strains
are small. The resulting constitutive relation is a non-linear relationship between the
linearized strain and the stress. The model is used to fit data for rock and concrete.
Some boundary value problems are studied within the context of homogeneous defor-
mations, and also a problem with inhomogeneous deformations is analyzed, namely
the inflation of a circular annulus. The predictions of this new implicit constitutive
relation are compared with the predictions of the constitutive equations for linearized
elastic bodies.
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1. Introduction

Many bodies exhibit the non-linear response even when they are un-
dergoing very small strains, in that the strain is related nonlinearly with respect
to the stress1. While this is true of several intermetallics (see Saito et al. [3],
Li et al. [4], Talling et al. [5], Sakaguch et al. [6], Hao et al. [7], Withey
et al. [8], Zhang et al. [9]), it is also true of very traditional materials like con-
crete (see Grasley et al. [10]) and rocks (see Cristescu [11]). The response of
such materials cannot be described by the classical linearized elastic constitutive
relation which one obtains when one linearizes any non-linear Cauchy elastic
body or its sub-class Green elastic bodies (see Truesdell and Noll [12]) un-
der the assumption that the displacement gradient is small. On the other hand,
linearization of implicit constitutive relations that have been put into place to

1Many early scientists that include Leibniz, James Bernoulli, Ricatti, Wertheim and others
did not subscribe to the elastic solids obeying Hooke’s law even when the strains are exceedingly
small (see discussion in Bell [1]; see also Rajagopal [2]). In fact, they considered parabola
and hyperbolas to fit the experimental results.
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describe the response of elastic bodies (see Rajagopal [13, 14]) do provide
approximations that lead to constitutive relationship between linearized strain
and stress that is non-linear. A thermodynamic framework for the description
of non-dissipative (elastic bodies) has been put into place by (Rajagopal and
Srinivasa [15]) within the context of which constitutive relations can be devel-
oped, and this will be the starting point for our analysis in this paper.

Using the thermodynamic framework developed by Rajagopal and Srini-
vasa [15] wherein the Helmholtz potential depends both on the Green–Saint
Venant strain and the Cauchy stress, restricting the class of interest of the bod-
ies to isotropic elastic bodies, and appealing to results in representation theory
(Spencer [16]), one can generate the implicit constitutive relation in terms of
the right Cauchy–Green tensor B and the Cauchy stress T, their respective
invariants and mutual invariants. Then we linearize this implicit constitutive
relation under the assumption that the Frobenius norm of the displacement gra-
dient is small in the sense that its square can be neglected in comparison to
itself. This then provides us with an implicit constitutive relation between the
linearized strain ε and the Cauchy stress T (see Eq. (3.3)) wherein the linearized
strain appears linearly but the stress appears nonlinearly. We simplify this im-
plicit relation and use it to study several boundary value problems. Two of the
boundary value problems that we study make them amenable to corroboration
against experiments.

We determine the material constants that appear within the context of our
constitutive relation by corroborating against experimental results that are avail-
able for the uniform compression of a concrete cylinder (see the experiments
results provided in Grasley et al. [10]) for the value of the normal axial and ra-
dial strains that are functions of the stresses. While we find very good agreement
with the results for our non-linear implicit constitutive relations, the agreement
is quite poor with respect to the classical linearized elastic constitutive relation
(see Fig. 1). We use the same values for the material constants as used in the ex-
perimental corroboration to study several other homogeneous deformations and
the inflation of a cylindrical body that leads to an inhomogeneous deformation.

In the case of rock, we consider an experiment where a cylinder of the spec-
imen that is free of lateral loading is subject to tension/compression (see the
experimental results presented in Bustamante and Ortiz [17]). Once again,
we find that the implicit non-linear constitutive relation fits the experimental
results much better than the classical linearized elastic constitutive relation.

In addition to studying boundary value problems within the context of the
non-linear implicit constitutive relation that we develop in this paper, we also
solve the boundary value problems within the context of the classical linearized
elastic constitutive relation and compare the two. We find that the solutions are
radically different.
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The organization of the paper is as follows. After a brief review of the prelim-
inaries in Section 2, we assume a form for the Helmholtz potential in Section 3
and derive the implicit constitutive relation that is used to describe concrete
and rock. In Section 4 specific boundary value problems involving homogeneous
deformations are solved using the constitutive relations developed in Section 3.
In Section 5 we use the experimental data for concrete and rock that are avail-
able to corroborate against specific boundary value problems that correspond to
the experiments to determine the material constants in the constitutive relation,
and then use them in the solution of other boundary value problems. Section 6
is dedicated to the solution of a boundary value problem wherein a cylindrical
annulus is subject to inhomogeneous deformation due to inflation. In Section 7
some final remarks are given.

2. Basic equations

The deformation gradient, the displacement field, the Green–Saint Venant
strain tensor and the linearized strain tensors are defined as:

(2.1) F =
∂x

∂X
, u = x−X, E =

1

2
(FTF− I), ε =

1

2

(
∂u

∂X
+
∂u

∂X

T)
.

The Cauchy stress tensor is denoted by T and satisfies the balance of linear
momentum

(2.2) ρẍ = divT + ρb,

where ρ is the density of the body in the current configuration, div is the diver-
gence defined in the current configuration, and b corresponds to the body forces
in that configuration as well. The dot denotes material time derivative. In the
case of quasi-static deformations from (2.2) we have

(2.3) divT + ρb = 0.

The second Piola–Kirchhoff stress tensor is denoted by S and is defined as

(2.4) S = JF−1TF−T,

where J = detF.
More details concerning the kinematics, concept of stress, and the basic bal-

ance equations for a continuum can be found in [18].

3. An implicit relation for elastic bodies

We use as a starting point the theory of Rajagopal and Srinivasa [15]
for elastic bodies, where we assume the existence of a free energy function
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Π = Π(E,S), and from the first law of thermodynamics we have (see, for ex-
ample, (3.1), (3.2) in [15] and (6.19), (6.20) in [19])

(3.1)
[

1

2

(
∂2Π

∂S∂E
+

∂2Π

∂E∂S

)
−III

]
: Ė +

∂2Π

∂S∂S
: Ṡ = 0,

where the components of the fourth order tensor III are given in Cartesian coor-
dinates as

(3.2) Iijkl =
1

2
(δikδjl + δilδjk).

We shall consider the special case wherein the potential Π is an isotropic
function of S and E, when the gradient of the displacement field is small, i.e.,∣∣ ∂u
∂X

∣∣ ∼ O(δ), δ � 1, which implies that S ≈ T and E ≈ ε, and the strains
appear linearly. The particular implicit relation of interest to us is:

(3.3) ε+ q(0)(trT)ε+ h(0)(Tε+ εT) + f(1)(tr ε)I + f(2)(trT)(tr ε)I

+ q(0) tr(Tε)I + q(0)(tr ε)T +
∂p

∂I4
I +

∂p

∂I5
T +

∂p

∂I6
T2 = 0,

where f(1), f(2), h(0) and q(0) are material constants and p = p(T) = p(I4, I5, I6),
where I4 = trT, I5 = 1

2 tr(T2) and I6 = 1
3 tr(T3). Details concerning how the

above relation (3.3) is derived, starting from (3.1) is provided in the Appendix,
see in particular (7.29).

For convenience, from now onwards we shall assume that p = p(T) depends
on the principal stresses or eigenvalues of T, i.e., if σi, i = 1, 2, 3 are such
principal stresses, we assume p = p(T) = p(I4, I5, I6) = p(σ1, σ2, σ3), where
p(σ1, σ3, σ2) = p(σ2, σ1, σ3) = p(σ3, σ2, σ1), and in such a situation (3.3) becomes

(3.4) ε+ q(0)(trT)ε+ h(0)(Tε+ εT) + f(1)(tr ε)I + f(2)(trT)(tr ε)I

+ q(0) tr(Tε)I + q(0)(tr ε)T +

3∑
i=1

∂p

∂σi

(i)

t ⊗
(i)

t = 0,

where
(i)

t , i = 1, 2, 3 are the principal directions or eigenvectors of T.
In Section 4 we study also the simpler case, where in (3.4) we assume that

q(0) = h(0) = 0, and (3.4) reduces to

(3.5) ε+ f(1)(tr ε)I + f(2)(trT)(tr ε)I +

3∑
i=1

∂p

∂σi

(i)

t ⊗
(i)

t = 0.

For the function p we use a simplified version of the model proposed in [20],
where we have

p = P1(σ1) + P1(σ2) + P1(σ3) + P2(σ1)(σ2 + σ3) + P2(σ2)(σ1 + σ3)

+ P2(σ3)(σ1 + σ2) + P3(σS),
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where σS = (σ1 + σ2 + σ3)/3. In the present work we assume P2(x) = 0, thus
after using the notation F and G for the functions P1 and P3, we obtain

(3.6) p = F(σ1) + F(σ2) + F(σ3) + G(σS).

Here, since σS = trT = (σ1 + σ2 + σ3)/3, it follows from (3.6) that

(3.7)
∂p

∂σi
= F′(σi) +

1

3
G′(σS),

where F′(σi) = dF
dσi

and G′(σS) = dG
dσS

. From now on we assume that

(3.8) F′(0) = 0, G′(0) = 0.

From the above implicit relation (3.3) the classical constitutive equation for
an isotropic linearly elastic body can be obtained if we assume that ∂p

∂I4
=

p(2)(trT), ∂p
∂I5

= p(3), ∂p
∂I6

= 0, where p(2) and p(3) are constants, and we as-
sume that

(3.9) p(2) =
ν

E
, p(3) = −(1 + ν)

E
, q(0) = 0, h(0) = 0, f(1) = 0, f(2) = 0,

where E is the Young modulus and ν is the Poisson ratio. In Sections 5 and 6
we compare some of the results of the new model with the predictions of the
classical linearized isotropic elastic body

(3.10) ε =
(1 + ν)

E
T− ν

E
(trT)I.

In the following section we use (3.4), (3.5) to study some simple boundary
value problems, wherein we have homogeneous distributions for the stresses and
strains, such that (2.3) is satisfied automatically (in absence of body forces). In
Section 5 we use (3.4), (3.5) to fit the experimental data for concrete from [10],
and for rock from [17], considering in particular the expressions for the homoge-
neous uniaxial compression/tension of a cylinder without lateral load as discussed
in Section 4.1. The particular expressions for the functions F and G are used to
obtain plots for the other boundary value problems studied in Section 4.

4. Boundary value problems

In this section we study some boundary value problems, where T and ε do
not depend on x. In such a case if there is no body force, for the quasi-static
case the equation of equilibrium (2.3) is satisfied automatically.
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4.1. Uniform tension-compression of a cylinder without lateral constraints

Let us suppose that the body in cylindrical coordinates is defined through

(4.1) 0 ≤ r ≤ ro, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ L.

We shall assume that the state of the stress and the strain tensors in the cylinder
take the form:

(4.2) T = σzez ⊗ ez, ε = εr(er ⊗ er + eθ ⊗ eθ) + εzez ⊗ ez,

where σz, εr and εz are constants.
We have trT = σz, σS = σz/3, σ1 = σ2 = 0, σ3 = σz,

(i)

t = ei, i = 1, 2, 3 and
tr ε = 2εr + εz.

Using (4.2) in (3.4) we obtain:

εr + q(0)σz(εr + εz) + (f(1) + f(2)σz)(2εr + εz) +
∂p

∂σ1
= 0,(4.3)

εz + 2(q(0) + h(0))σzεz + [f(1) + (f(2) + q(0))σz](2εr + εz) +
∂p

∂σ3
= 0.(4.4)

The above two relations can be used, for example, to obtain εr and εz in terms
of σz.

In (3.7) using the eigenvalues of T given previously we have

(4.5)
∂p

∂σ1
=

1

3
G′(σz/3),

∂p

∂σ3
= F′(σz) +

1

3
G′(σz/3),

where F′(x) = dF
dx and G′(x) = dG

dx .

4.2. Uniform tension-compression of a cylinder with lateral load

For the same cylinder described in (4.1), we assume the presence of an axial
and a radial load, which causes the same homogeneous strain (4.2)2 (this test is
called sometimes the triaxial test). The stress tensor is

(4.6) T = σr(er ⊗ er + eθ ⊗ eθ) + σzez ⊗ ez,

where σr and σz are constants. We have trT = 2σr + σz, σS = (2σr + σz)/3,

σ1 = σ2 = σr, σ3 = σz, and as before
(i)

t = ei, i = 1, 2, 3 and tr ε = 2εr + εz.
Using (4.6) and (4.2)2 in (3.4) we obtain:

εr+q(0)(2σr+σz)εr+2h(0)σrεr+f(1)(2εr+εz)+f(2)(2σr+σz)(2εr+εz)(4.7)

+q(0)(2σrεr+σzεz)+q(0)(2εr+εz)σr+
∂p

∂σ1
= 0,

εz+q(0)(2σr+σz)εz+2h(0)σzεz+f(1)(2εr+εz)+f(2)(2σr+σz)(2εr+εz)(4.8)

+q(0)(2σrεr+σzεz)+q(0)(2εr+εz)σz+
∂p

∂σ3
= 0.
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The above two relations can be used, for example, to obtain εr and εz in terms
of σz and σr. Here, we show such explicit expressions for εr and εz:

εr =

{
∂p

∂σ1
[1+f(1) +2(f(2) +q(0))σr+(f(2) +2h(0) +2q(0))σz](4.9)

− ∂p

∂σ3
[f(1) +(2f(2) +q(0))σr+(f(2) +q(0))σz]

}
×{2[f(1) +q(0)(σr+σz)+f(2)(2σr+σz)]

2−[1+2f(1)

+2(f(2) +h(0) +3q(0))σr+(2f(2) +q(0))σz][1+f(1)

+2(f(2) +q(0))σr+(f(2) +2h(0) +3q(0))σz]}−1,

εz =

{
2f(1)

(
∂p

∂σ1
− ∂p

∂σ3

)
+2

∂p

∂σ1
[(2f(2) +q(0))σr+(f(2) +q(0))σz](4.10)

− ∂p

∂σ3
[1+2(2f(2) +h(0) +3q(0))σr+(2f(2) +q(0))σz]

}
×{1+2σr[h

(0) +4q(0) +q(0)(2h(0) +5q(0))σr]

+2(h(0) +2q(0) +2h(0)2
σr+9h(0)q(0)σr+8q(0)2

σr)σz+q(0)(2h(0)

+q(0))σ2
z+f(2)(2σr+σz)(3+2h(0)σr+6q(0)σr+4h(0)σz+3q(0)σz)

+f(1)[3+6q(0)σr+3q(0)σz+2h(0)(σr+2σz)]}−1.

In the simpler case that q(0) = h(0) = 0 (see (3.5)) (4.9), (4.10) become

εr =
1

3

[
∂p

∂σ3
− ∂p

∂σ1
−

(
2 ∂p
∂σ1

+ ∂p
∂σ3

)
(1 + 3f(1) + 6f(2)σr + 3f(2)σz)

]
,(4.11)

εz =
2
( ∂p
∂σ1
− ∂p

∂σ3

)
[f(1) + f(2)(2σr + σz)]− ∂p

∂σ3

1 + 3f(1) + 3f(2)(2σr + σz)
.(4.12)

Here for both cases (4.9), (4.10) and (4.11), (4.12) from (3.7) we have:

(4.13)

∂p

∂σ1
= F′(σr) +

1

3
G′([2σr + σz]/3),

∂p

∂σ3
= F′(σz) +

1

3
G′([2σr + σz]/3).

4.3. Slab subject to simple shear stress

For the slab described through

(4.14) −Li
2
≤ xi ≤

Li
2
, i = 1, 2, 3,
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we assume the presence of the stress and the strain tensors:

(4.15) T = τ(e1 ⊗ e2 + e2 ⊗ e1), ε =

3∑
i=1

εiei ⊗ ei + γ(e1 ⊗ e2 + e2 ⊗ e1),

where τ , εi, i = 1, 2, 3 and γ are constants. In this problem σ1 = −τ , σ2 = 0,

σ3 = τ and
(1)

t = − 1√
2
e1 + 1√

2
e2,

(2)

t = e3,
(3)

t = 1√
2
e1 + 1√

2
e2, σS = 0, trT = 0,

tr(Tε) = 2γτ and tr ε = ε1 + ε2 + ε3.
Using (4.15) in (3.4) we obtain:

γ + h(0)(ε1 + ε2)τ + q(0)(ε1 + ε2 + ε3)τ +
1

2

(
∂p

∂σ3
− ∂p

∂σ1

)
= 0,(4.16)

ε1 + 2h(0)γτ + f(1)(ε1 + ε2 + ε3) + 2q(0)γτ +
1

2

(
∂p

∂σ1
+

∂p

∂σ3

)
= 0,(4.17)

ε2 + 2h(0)γτ + f(1)(ε1 + ε2 + ε3) + 2q(0)γτ +
1

2

(
∂p

∂σ1
+

∂p

∂σ3

)
= 0,(4.18)

ε3 + f(1)(ε1 + ε2 + ε3) + 2q(0)γτ +
∂p

∂σ2
= 0.(4.19)

Subtracting (4.18) from (4.17) we find that

(4.20) ε1 = ε2 = ε.

Using the above in (4.16), (4.18) and (4.19) we obtain:

ε =

{
∂p

∂σ1
(1 + f(1))− 2f(1) ∂p

∂σ2
+

∂p

∂σ3
(1 + f(1))(4.21)

+ 2

(
∂p

∂σ1
− ∂p

∂σ3

)
(h(0) + f(1)h(0) + q(0))τ

+ 2q(0)

[
2h(0) ∂p

∂σ2
−
(
∂p

∂σ1
− 2

∂p

∂σ2
+

∂p

∂σ3

)
q(0)

]
τ2

}
× {4[2(1 + f(1))h(0)2

+ 4h(0)q(0) + 3q(0)2
]τ2 − 2− 6f(1)}−1,

ε3 =

{
∂p

∂σ2
− 4

∂p

∂σ2
(h(0) + q(0))2τ2(4.22)

− f(1)

[
∂p

∂σ1
− 2

∂p

∂σ2
+

∂p

∂σ3
+ 2h(0)

(
∂p

∂σ1
− ∂p

∂σ3

)
τ

]
+ q(0)τ

[
∂p

∂σ1
− ∂p

∂σ3
+ 2

(
∂p

∂σ1
+

∂p

∂σ3

)
(h(0) + q(0))τ

]}
× {2[2(1 + f(1))h(0)2

+ 4h(0)q(0) + 3q(0)2
]τ2 − 1− 3f(1)}−1,
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γ = −
{

(1 + 3f(1))

(
∂p

∂σ1
− ∂p

∂σ3

)
(4.23)

+ 2

[
h(0)

(
∂p

∂σ1
+ f(1) ∂p

∂σ1
− 2f(1) ∂p

∂σ2
+

∂p

∂σ3
+ f(1) ∂p

∂σ3

)
+

(
∂p

∂σ1
+

∂p

∂σ2
+

∂p

∂σ3

)
q(0)

]
τ

}
× {4[2(1 + f(1))h(0)2

+ 4h(0)q(0) + 3q(0)2
]τ2 − 2− 6f(1)}−1.

Since σS = 0 from (3.7) we have

(4.24)
∂p

∂σ1
= F′(−τ),

∂p

∂σ2
= 0,

∂p

∂σ3
= F′(τ).

In the simpler case that h(0) = q(0) = 0, it follows from (4.15) from (3.5), it
follows from (4.25) and (3.5) that:

ε = − [F′(−τ) + F′(τ)](1 + f(1))

2(1 + 3f(1))
,(4.25)

ε3 =
[F′(−τ) + F′(τ)]f(1)

(1 + 3f(1))
,(4.26)

γ =
1

2
[F′(−τ)− F′(τ)].(4.27)

4.4. Slab subject to simple shear strain

In this section we study the behaviour of the same slab described in (4.14)
when it is in a state of simple shear strain.

The stress tensor and the strain tensors are assumed to take the form:

T = σae1 ⊗ e1 + σbe2 ⊗ e2 + σce3 ⊗ e3 + τ(e1 ⊗ e2 + e2 ⊗ e1),(4.28)
ε = γ(e1 ⊗ e2 + e2 ⊗ e1),(4.29)

where σa, σb, σc, τ and γ are constants.
It follows from (4.28) and (4.29) tr ε = 0, trT = σa + σb + σc = 3σS and

tr(Tε) = 2γτ . Using (4.28), (4.29) in (3.4) we obtain the relations:

γ + q(1)(σa + σb + σc) + h(0)(σa + σb)γ +
∂p

∂σ1

1

r2
1

(
σa − σb − `

2τ

)
(4.30)

+
∂p

∂σ2

1

r2
2

(
σa − σb + `

2τ

)
= 0,

2h(0)γτ + 2q(0)γτ +
∂p

∂σ1

1

r2
1

(
σa − σb − `

2τ

)2

(4.31)

+
∂p

∂σ2

1

r2
2

(
σa − σb + `

2τ

)2

= 0,
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2h(0)γτ + 2q(0)γτ +
∂p

∂σ1

1

r2
1

+
∂p

∂σ2

1

r2
2

= 0,(4.32)

2q(0)γτ +
∂p

∂σ3
= 0,(4.33)

where

σ1 =
1

2
(σa + σb − `), σ2 =

1

2
(σa + σb + `), σ3 = σc,(4.34)

r1 =

√(
σa − σb − `

2τ

)2

+ 1, r2 =

√(
σa − σb + `

2τ

)2

+ 1,(4.35)

and

(4.36) ` =
√

(σa − σb)2 + 4τ2.

The simpler case where h(0) =q(0) =0 can be obtained easily from (4.31)–(4.33)
and is not presented here for the sake of brevity.

The four equations (4.31)–(4.33) can be used to obtain γ, σa, σb and σc in
terms of τ . The expressions for ∂p

∂σi
are given in (3.7).

5. Applications to the modelling of concrete and dry rock

We apply the constitutive models (3.4), (3.5) for the modelling of concrete
and rock, wherein we assume rock as an isotropic, dry, homogeneous and elastic
solid. The data for concrete is taken from one of the tests documented in [10],
while the data for rock are taken from [17]. In both cases the data are obtained
for a cylinder under uniform compression/tension and no lateral load (see Sec-
tion 4.1). In the implicit model (3.4) we have four constants f(1), f(2), h(0) and q(0),
and the functions F, G. In this work the functions F, G are found indirectly in
the following manner. We assume that from the experimental data for a cylinder
under compression/tension we can propose functions (see Section 4.1) ε̂z(σz) and
ε̂r(σz) to fit the data for εz and εr versus σz for such a test, then from (4.3), (4.4)
(see also (4.5)) we have (using the notation x for the arguments of the different
functions):

F′(x) = ε̂r(x)− q(0)ε̂r(x)x− ε̂z(x)[1 + 2(h(0) + q(0))x],(5.1)

G′(x) = −3{ε̂r(3x)[1 + 2f(1) + 3(2f(2) + q(0))x](5.2)

+ ε̂z(3x)[f(1) + 3(f(2) + q(0))x]}.

In the above expressions the constants f(1), f(2), h(0) and q(0) are arbitrary. We
study the effect of considering different values for such material constants for
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the other boundary value problems studied in Sections 4.2–4.4. If additional
experimental data can be obtained, for example, for the triaxial compression of
a cylinder (see Section 4.2), these constants f(1), f(2), h(0) and q(0) could be used
to fit that additional data.

Regarding the range of possible values for the material constants f(1), f(2),
h(0) and q(0), from the results shown in Sections 4.2 and 4.3 we can see that for
certain values of such constants, it is possible that εz, εr (see (4.9)–(4.12)), and
γ, ε and ε3 can become infinite (see (4.21)–(4.23), (4.25), (4.26)). We choose the
values for these functions so as to avoid such blow up.

5.1. Concrete

In this section we use the method described previously for the particular case
of modelling the behaviour of concrete. The experimental data is taken from one
of the tests presented in [10]. In that work the axial and radial components of
the strain tensor are obtained for the uniform compression of a cylinder (see
Section 4.1). No results are reported for the behaviour of a similar cylinder in
tension. For the functions ε̂z and ε̂r we propose:

ε̂z(σz) = ξσz + ζσ5
z ,(5.3)

ε̂r(σz) = $1[exp(ϑ1σz)− 1] +$2[exp(ϑ2σz)− 1],(5.4)

where ξ, ζ, $1, $2, ϑ1 and ϑ2 are material constants. In the case of the lin-
earized elastic model (3.10) for this problem of a cylinder under compression
without lateral load we have εz = σz/E and εr = −νσz/E. The different ma-
terial constants are found using least squares fitting and are shown in Table 1.
In Fig. 1 we have the comparison between the experimental data called ‘Exp.’,
the predictions of the non-linear models (5.3), (5.4) (called ‘Nonlin.’), and the
linearized model (3.10) (called ‘Lin.’), where we compare the behaviour of the
axial and radial components of the strain tensor. We show separately the results
in compression and tension.

Table 1. Modeling of concrete. Values for the material constants in (5.3), (5.4)
and also for the linearized model (3.10), for the case of concrete under

compression (see [10]).

ξ ζ $1 ϑ1

2.364× 10−5 [MPa]−1 1.433× 10−13 [MPa]−5 1.809× 10−5 −0.03768 [MPa]−1

$2 ϑ2 E ν

1.904× 10−16 −0.3607 [MPa]−1 38051.8 [MPa] 0.1452

Using the material constants presented in Table 1, we study the rest of the
boundary value problems presented in Sections 4.2–4.4, considering different
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Fig. 1. Comparison of the predictions for the behaviour of concrete, considering the
nonlinear model (5.3), (5.4) called ‘Nonlin.’, the linear model (3.10) called ‘Lin.’, with the
experimental data from [10], called ‘Exp.’. The axial stress σz is in [MPa]. (a,b): results for
the axial component of the strain, (c,d): results for the radial component of the strain.

cases for the constants f(1), f(2), h(0) and q(0). In this section from (3.4), (3.5) we
can see that f(1) is a dimensionless constant, while f(2), h(0) and q(0) are given in
1/[MPa]. In Figs. 2–4 we show results for the triaxial compression of a cylinder,
described in Section 4.2, using (3.5) and the material constants from Table 1,
and assuming that h(0) = q(0) = 0. For this figure and also for Figs. 5–7 we have
used the definitions

(5.5) σ̄z =
σz
E
, τ̄ =

τ

E
, σ̄a =

σa
E
, σ̄c =

σc
E
.

In Fig. 2 results are presented for the case f(1) = 1, σr = −5 [MPa], and
where we have three cases for f(2), namely f(2) = 0.015f(1), f(2) = 0.01f(1) and
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Fig. 2. Results for the triaxial compression of a cylinder considering the model for concrete
(4.11), (4.12) and (5.3), (5.4). Case f(1) = 1, σr = −5 [MPa] and different values for f(2).
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Fig. 3. Results for the triaxial compression of a cylinder considering the model for concrete
(4.11), (4.12) and (5.3), (5.4). Case f(2) = 0.01f(1), σr = −5 [MPa] and considering three

values for f(1).

f(2) = 0.005f(1). In Fig. 3 we show results for the case f(2) = 0.01f(1), σr =
−5 [MPa] and for three cases for f(1), namely f(1) = 1, f(1) = 5 and f(1) = 10.
Finally, in Fig. 4 results are presented when f(2) = 0.01f(1), f(1) = 1 for four
values for σr = −5,−10,−15,−20 [MPa].
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different cases σr is in [MPa].

In Figs. 5, 6 results are presented for the triaxial compression of a cylinder,
for the case h(0) 6= 0 or q(0) 6= 0, assuming f(2) = 0.01f(1), f(1) = 1 and σr =
−5 [MPa]. In Fig. 5 we show results for the case q(0) = 0 and h(0) = 0, h(0) =
0.006f(1) and h(0) = 0.012f(1). In Fig. 6 results are presented for the case h(0) = 0
and q(0) = 0, q(0) = 0.006f(1) and q(0) = 0.012f(1).
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Fig. 5. Results for the triaxial compression of a cylinder considering the model for concrete
(5.3), (5.4) and (3.4). Case where it is assumed that f(2) = 0.01f(1), f(1) = 1 and

σr = −5 [MPa], for different values of h(0) and q(0) = 0.
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Fig. 7. Results for different homogeneous problems, for the modelling of concrete,
comparing the predictions of the nonlinear model (5.3), (5.4), (3.4) denoted ‘NL’, and the

linearized elastic model (3.10) that is denoted ‘L’; (a) results for the triaxial
compression/tension of a cylinder, (b) results for the simple shear stress of a slab (see

Section 4.3), (c) results for the simple shear strain of a slab (see Section 4.4), results for γ,
(d) results for the components of the stress σ̄a, σ̄c for the simpler shear strain of a slab.
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Finally, in Fig. 7 we present results for the problems described in Sections 4.3
and 4.4, comparing the predictions of the new constitutive relation (3.4) (see
(5.1)–(5.4)), which in the figure are denoted ‘NL’, and the linearized model
that in the figure are denoted ‘L’ (see (3.10)). For the three cases studied
here we assume f(1) = 1, f(2) = 0.01f(1), σr = −5 [MPa], h(0) = 0.006f(1)

and q(0) = 0.006f(1). In Fig. 7(a) results are shown for the triaxial compres-
sion/tension of a cylinder. In Fig. 7(b) results are shown for the simple shear
stress of a slab (see 4.3), and in Figs. 7(c,d) results are presented for the simple
shear strain of a slab (see 4.4). For this last problem it is necessary to observe
that σb = σa (see (4.31)–(4.33)).

5.2. Rock

The constitutive relations (3.4), (3.5) are also used to model the behaviour of
two types of rock, namely granodiorite and diorite-monzonite. The experimental
results are taken from [17]. In that paper results were obtained for a cylinder
(without lateral load) under compression and also tension. In the case of the
cylinder in tension, only results for the axial component of the strain versus the
axial stress are reported, whereas for the cylinder in compression we have data
for the axial and radial components of the strain tensor. We can observe the
completely different behaviour in compression in comparison to tension.

For the functions ε̂z and ε̂z defined at the beginning of this Section 5, we
assume that:

ε̂z(σz) = ε̂(C)
z (σz)qC(σz) + ε̂(T )

z (σz)qT (σz),(5.6)

ε̂r(σz) = ε̂(C)
r (σz)qC(σz) + ε̂(T )

r (σz)qT (σz),(5.7)

where:

(5.8) qT (σz) =
1

2
[1 + erf(Cσz)], qC(σz) =

1

2
[1− erf(Cσz)],

where C is a positive constant, and:

ε̂(C)
z (σz) = ξ(C)

z σz + ζ(C)
z σ2

z ,(5.9)
ε̂(T )
z (σz) = ξ(T )

z σz + ζ(T )
z σ2

z ,(5.10)
ε̂(C)
r (σz) = ξ(C)

r σz + ζ(C)
r σ2

z ,(5.11)

where ξ(C)
z , ζ(C)

z , ξ(T )
z , ζ(T )

z , ξ(C)
r , and ζ(C)

r are constants. In the above expressions
(5.6), (5.7) we have functions ε̂z(σz) and ε̂r(σz) that are valid for σz negative
or positive. Those functions depend on functions ε̂(C)

z (σz) and ε̂(C)
r (σz) that are

obtained only using the data in compression of a cylinder, whereas the functions
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ε̂
(T )
z (σz) and ε̂

(T )
r (σz) should be obtained using the data for tension of a cylinder.

As mentioned before, we do not have experimental data for the radial component
of the strain for the tension of a cylinder, which is the reason why in (5.9)–(5.11)
we do not propose any expression for ε̂(T )

r (σz). Instead, we simply assume that
ε̂

(T )
r (σz) = −νε̂(T )

z (σz), where ν is the Poisson ratio found during compression.
From the experimental data shown in [17] we obtain the different material

constants in (5.9)–(5.11), and E, ν for the linearized model (3.10), in this last
case only using the data for the compression of the cylinder. The constants are
shown in Table 2. Here we assume C = 10 [1/MPa].

Table 2. Modeling of rock. Values for the material constants in (5.9)–(5.11) and
also for the linearized model (3.10) (see [17]).

ξ
(C)
z ζ

(C)
z ξ

(C)
r ζ

(C)
r

1.824 × 10−6 [MPa]−1 −3.888 × 10−7 [MPa]−2 1.086 × 10−7 [MPa]−1 7.631 × 10−8 [MPa]−2

ξ
(T )
z ζ

(T )
z E ν

0.001647 [MPa]−1 9.699 × 10−5 [MPa]−2 46926.3 [MPa] 0.17203

In Fig. 8 we show results for the model (5.6), (5.7) and the linearized model
(3.10) for the case of a cylinder under compression/tension, without lateral load,
comparing with the experimental data of [17]. In the case of the linearized model
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Fig. 8. Comparison of the predictions for the behaviour of rock, for the non-linear model
(5.6), (5.7) called ‘Nonlin.’, the linear model (3.10) called ‘Lin.’, with the experimental data
from [17], called ‘Exp.’. The axial stress σz is in [MPa]. (a, d) Comparison for the whole range
of values for σz. (b, e) Comparison for the case σz ≤ 0. (c, f) Comparison for the case σz ≥ 0.
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Fig. 9. Predictions of the non-linear model (3.4), (5.6), (5.7), for the triaxial load of
a cylinder. Figures (a,b) results for the case σr = −5 [MPa], f(1) = 1, and f(2) = 0.02f(1),

f(2) = 0.01f(1) and f(2) = 0.005f(1). Figures (c,d) show results for the case σr = −5,
f(2) = 0.01f(1) and f(1) = 0.1, f(1) = 1 and f(1) = 10. Figures (e,f) show results for the case

f(1) = 1, f(2) = 0.01f(1) and σr = −5, σr = −10, σr = −15 and σr = −20 [MPa].

(3.10) for the whole range of values for σz we only use the constants obtained
using the experimental data in compression2. In that Fig. 8 we show separately
the behaviour of the cylinder only for compression and only for tension.

In Fig. 9 we show results for the triaxial compression of a cylinder (see Sec-
tion 4.2) within the context of (3.4), assuming h(0) = q(0) = 0. Here as before
f(1) is a dimensionless constant, while f(2), h(0) and q(0) are given in 1/[MPa].
In Figs. 9(a, b) results are shown for the case σr = −5 [MPa], f(1) = 1, and

2See [17] for a ‘bimodular’ model where two sets of constants E, ν are used for the model,
obtained separately using the data in compression and tension, respectively.
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Fig. 10. Predictions of the non-linear model (5.1), (5.2), (5.6), (5.7), (3.5), for the triaxial
load of a cylinder; (a,b) results for the cases q(0) = 0, h(0) = 0, h(0) = 0.0075f(1) and

h(0) = 0.015f(1), (c,d) results for h(0) = 0, q(0) = 0, q(0) = 0.0075f(1) and q(0) = 0.015f(1).

f(2) = 0.02f(1), f(2) = 0.01f(1) and f(2) = 0.005f(1). In Figs. 9(c, d) results are pre-
sented for the case σr = −5, f(2) = 0.01f(1) and f(1) = 0.1, f(1) = 1 and f(1) = 10.
Finally, in Figs. 9(e, f) results are shown for the case f(1) = 1, f(2) = 0.01f(1) and
σr = −5, σr = −10, σr = −15 and σr = −20 [MPa]. In all the cases studied
above we show the behaviour of the cylinder for the whole range of values for σz,
and also when σz ≤ 0 and separately when σz ≥ 0.

In Fig. 10 we portray the case σr = −5 [MPa], f(1) = 1, f(2) = 0.01f(1) for
different values of h(0) and q(0). In Figs. 10(a, b) we display results for q(0) = 0
and h(0) = 0, h(0) = 0.0075f(1) and h(0) = 0.015f(1). In Figs. 10(c, d) results are
presented for h(0) = 0 and q(0) = 0, q(0) = 0.0075f(1) and q(0) = 0.015f(1). In
both cases we portray results for the whole range of values for σz, and for the
particular situation σz ≤ 0 and σz ≥ 0.

In Figs. 11–13 we exhibit results for the different boundary value prob-
lems presented in Sections 4.2–4.4, comparing the predictions of the non-linear
model (3.4), (5.1), (5.2), (5.6), (5.7), and the linearized model (3.10). Here we
assume that σr = −5 [MPa], f(1) = 1, f(2) = 0.01f(1), h(0) = 0.0075f(1) and
q(0) = 0.0075f(1). In Fig. 11 we present results for triaxial loading of a cylinder.
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the problem of triaxial load of a cylinder.
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the problem of simple shear strain of a slab.
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In Fig. 11(a) we depict the predictions for the whole range of values for σz.
In Fig. 11(b) we show details of the above plot for the case σz ≤ 0, while in
Fig. 11(c) we show details for the case σz ≥ 0.

In Fig. 12 we document results for the case of a slab in a state of simple shear
stress (see Section 4.3). In the case of the non-linear model we present results
for the shear γ, and also for the longitudinal components of the strain tensor ε1

and ε3.
Finally, in Fig. 13 we show results corresponding to simple shear strain

of a slab (see Section 4.4). In Fig. 13(a) results for γ are presented, while in
Fig. 13(b) results for the normalized components of the stress σ̄a and σ̄c are
shown for the non-linear model.

6. Inhomogeneous distributions for the stresses and strains.
Inflation of a cylindrical annulus

In this section we study the behaviour of the cylindrical annulus

(6.1) ri ≤ r ≤ ro, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ L,

when subject to the stresses shown below.
It is assumed that the cylinder is subject to the following distribution of

stresses

(6.2) T = σr(r)er ⊗ er + σθ(r)eθ ⊗ eθ + σz(r)ez ⊗ ez,

and thus trT = σr(r) + σθ(r) + σz(r), σS = [σr(r) + σθ(r) + σz(r)]/3, σ1 = σr,

σ2 = σθ, σ3 = σz and
(1)

t = er,
(2)

t = eθ,
(3)

t = ez.
Using (6.2) in the equation of equilibrium (2.3) (assuming b = 0) we obtain:

(6.3)
dσr
dr

+
1

r
(σr − σθ) = 0 ⇔ σθ =

d

dr
(rσr).

It is assumed that the stress distribution (6.2) produces the displacement
field

(6.4) u = ur(r)er + (λz − 1)zez,

where λz is a positive constant. Using (6.4) to obtain the components of the
strain tensor (see (2.1)4) we have

(6.5) εr =
dur
dr

, εθ =
ur
r
, εz = λz − 1.
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Using (6.2) and (6.5) in (3.4) we obtain:

εr + q(0)(σr + σθ + σz)εr + 2h(0)εrσr + f(1)(εr + εθ + εz)(6.6)

+ f(2)(σr + σθ + σz)(εr + εθ + εz) + q(0)(εrσr + εθσθ + εzσz)

+ q(0)(εr + εθ + εz)σr +
∂p

∂σ1
= 0,

εθ + q(0)(σr + σθ + σz)εθ + 2h(0)εθσθ + f(1)(εr + εθ + εz)(6.7)

+ f(2)(σr + σθ + σz)(εr + εθ + εz) + q(0)(εrσr + εθσθ + εzσz)

+ q(0)(εr + εθ + εz)σθ +
∂p

∂σ2
= 0,

εz + q(0)(σr + σθ + σz)εz + 2h(0)εzσz + f(1)(εr + εθ + εz)(6.8)

+ f(2)(σr + σθ + σz)(εr + εθ + εz) + q(0)(εrσr + εθσθ + εzσz)

+ q(0)(εr + εθ + εz)σz +
∂p

∂σ3
= 0,

where from (3.7) we have:

∂p

∂σ1
= F′(σr(r)) +

1

3
G′([σr(r) + σθ(r) + σz(r)]/3),(6.9)

∂p

∂σ2
= F′(σθ(r)) +

1

3
G′([σr(r) + σθ(r) + σz(r)]/3),(6.10)

∂p

∂σ3
= F′(σz(r)) +

1

3
G′([σr(r) + σθ(r) + σz(r)]/3).(6.11)

Equations (6.6)–(6.8) (recall (6.3)2) are solved for σr = σr(r) and σz using the
same methodology presented in [21] and using the program Comsol3 [22].

In subsequent analysis, for the sake of simplicity, we assume that λz = 1, i.e.,
there is no axial extension of the annulus. Regarding the boundary conditions at
r = ri and at r = ro we assume that σr(ri) = −P and σr(ro) = 0. In the plots
shown below we use the notation:

(6.12)
σ̄r =

σr
E
, σ̄θ =

σθ
E
, σ̄z =

σz
E
, r̄ =

r

ri
,

ūr =
ur
ri
, ūri =

ur(ri)

ri
, P̄ =

P

E
.

3For the two constitutive relations studied in this paper, and after carrying out an analysis
of the influence of the mesh, we use a finite element model with 960 elements of the same
length (Lagrange quadratic) and 3842 degrees of freedom. The nonlinear equations are solved
using the damped Newton method with a relative tolerance of 10−6, a maximum number of
iterations of 250, and the initial damping factor of 10−4 and the minimum damping factor
of 10−8.
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In Figs. 14–16 results for the behaviour of the annulus are shown for the
case of modelling concrete, using (5.1)–(5.4), (3.4) and comparing the results
with the predictions of the linearized model (3.10). In Fig. 14 we display results
for the dimensionless components of the stress versus the dimensionless radial
position, for 4 values of the external traction P . In that plot the results obtained
using (3.4) are denoted ‘NL’, and the results using the linearized model (3.10) are
denoted ‘L’. In Fig. 15 we depict results for the dimensionless radial displacement
and the two components of the strain tensor. Finally, in Fig. 16 results are
presented for the dimensionless radial displacement at r = ri versus the ex-
ternal dimensionless load P̄ , comparing the results obtained using the non-linear
model (3.4) (which is denoted ‘Nonlinear’), and the predictions of the linearized
model (3.10) that is denoted ‘Linear’.
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Fig. 14. Results for the dimensionless components of the stress tensor versus the
dimensionless radial position for the modelling of concrete. Results are shown for different

values of P [MPa]. The results obtained with (3.4) are denoted ‘NL’, and the results obtained
using (3.10) are denoted ‘L’.

1 1.5 2
0.5

1

1.5

2

2.5

3

3.5
10-3

1 1.5 2
-2

0

2

4

6

8

10
10-3

1 1.5 2
0

0.5

1

1.5

2

2.5

3
10-3

r̄r̄r̄

ū
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Fig. 15. Results for the dimensionless radial displacement and the components of the strain
tensor versus the dimensionless radial position for the modelling of concrete. Results for
different values of P [MPa]. The results obtained using (3.4) are denoted by ‘NL’, and the

results obtained using (3.10) are denoted by ‘L’.
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Fig. 16. Modelling of concrete. Behaviour of the dimensionless radial displacement at r = ri
versus the dimensionless load P̄ .
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Fig. 17. Results for the dimensionless components of the stress tensor versus the
dimensionless radial position in the case of rock. Results for different values of P [MPa]. The

results obtained with (3.4) are denoted ‘NL’, and the results obtained using (3.10) are
denoted ‘L’.
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Fig. 18. Results for the dimensionless radial displacement and the components of the strain
tensor versus the dimensionless radial position in the case of rock. Results for different values
of P [MPa]. The results obtained with (3.4) are denoted ‘NL’, and the results obtained using

(3.10) are denoted ‘L’.
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Fig. 19. Modelling of rock. Behaviour of the dimensionless radial displacement at r = ri
versus the dimensionless load P̄ .

In Figs. 17–19 results for the behaviour of the annulus are shown for the
case of modelling rock using (3.4), (5.1), (5.2), (5.6)–(5.11), for the non-linear
model. In Fig. 17 results are presented for the dimensionless components of the
stress tensor versus the dimensionless radial position, for different values of the
external load P [MPa]. In Fig. 18 we show results for the dimensionless radial
displacement and the two components of the strain tensor. In Fig. 19 results are
presented for the dimensionless radial displacement at r = ri versus the external
dimensionless load P̄ .

7. Conclusions

In the present communication we have analyzed the implicit constitutive re-
lation (3.3), and used it to describe the response of a type of isotropic dry rock
and concrete. In (3.3) we can observe the explicit dependence of the relation
on tr ε. That term is directly related with the change in density of the body,
and it can be an important factor for the modelling of porous solids, where the
porosity (which is affected by the deformation) is known to have an important
impact on the manner such solids behave (see, for example, [2]). We reiter-
ate that is the main aim of this work. The constitutive relations used in [10]
and [17] do not contain material moduli that depend explicitly on the density.
Thus, while the constitutive relations in [10] and [17] might fit the data for one
specific experiment, it might not in other experiments on porous solids whose
material properties are expected to depend explicitly on density. Also, in our
general constitutive relation the material moduli depend on the pressure and we
expect such a dependence in porous elastic solids. Also the presence of terms like
Tε+ εT and tr(Tε) in more general deformation would lead to terms that the
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other two constitutive relations cannot. The fact that in a specific experiment
two different constitutive relations fit the data does not mean the philosophical
underpinning of the constitutive relations are the same, and this fact cannot be
overemphasized.

Regarding the modelling of the mechanical behaviour of rock, in [17] a bi-
modular model was proposed for rock, where in particular there are two sets
of constants, a modulus resembling the Young modulus for tension and com-
pression, and a Poisson-like modulus in tension and compression, plus another
constant that is related with the transition between such states. The interested
reader can compared the fitting in that work (see Fig. 8(b,c,e) in [17]) and the
results from Fig. 8 here. The nonlinear model (3.3), (5.6)–(5.11) give a qualita-
tively better fitting for the experimental data, however the new implicit model
presented here requires more material constants than that considered in [17]. On
the other hand, if more experimental data would be available, for example, for
the problems studied in Sections 4.2–4.4, then the new model (3.3) would be
much more suitable for the fitting of that data for porous elastic solids.

Concerning the modelling of the behaviour of concrete using the experimen-
tal data from [10], it is necessary to remark that the new model (3.3), (5.3),
(5.4) does not necessary give a much better fitting for the data of compression
of a cylinder without lateral load (see Fig. 1). However, as explained in the in-
troduction, the main aim of the present work is the development of an implicit
constitutive model, where the effect of the density (and as a result the influ-
ence of the porosity) can be put explicitly in the constitutive relation, which
we feel would be useful for describing porous elastic solids for a wide range of
experiments.

Our intention is to use (3.3) or other special subclasses of (3.1) for the mod-
elling of other porous solids, for which experimental data can be found. Another
important future investigation involves the role the density plays in the stability
of solutions.

Appendix A

Here, we present details concerning the derivation of (3.4) from the general
implicit relation (3.1). We recall that relation (3.1)[

1

2

(
∂2Π

∂S∂E
+

∂2Π

∂E∂S

)
−III

]
: Ė +

∂2Π

∂S∂S
: Ṡ = 0.

If we only consider the modelling of isotropic bodies, it follows from the theory
of invariants (see, for example, [16]) that

Π = Π(E,S) = Π(I1, I2, I3, I4, I5, I6, I7, I8, I9, I10),
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where

I1 = trE, I2 =
1

2
tr(E2), I3 =

1

3
tr(E3), I4 = trS,

I5 =
1

2
tr(S2), I6 =

1

3
tr(S3),

(7.1)

I7 = tr(ES), I8 = tr(ES2), I9 = tr(E2S), I10 = tr(E2S2).(7.2)

Using the above invariants to express Π = Π(E,S)

(7.3)
∂Π

∂S
= Π4I+Π5S+Π6S

2+Π7E+Π8(ES+SE)+Π9E
2+Π10(E2S+SE2),

and

(7.4)
∂Π

∂E
= Π1I+Π2E+Π3E

2+Π7S+Π8S
2+Π9(ES+SE)+Π10(ES2+S2E),

where we have used the notation Πi = ∂Π
∂Ii

, i = 1, . . . , 10. It follows from (7.3)
that

∂2Π

∂S∂S
= Π5III +Π6SSS +Π8EEE

(1)+Π10EEE
(2)+Π4,4I⊗I(7.5)

+(Π4,5+Π7,9)(I⊗S+S⊗I)+Π4,6(I⊗S2+S2⊗I)
+Π4,7(I⊗E+E⊗I)+Π4,8[I⊗(ES+SE)

+(ES+SE)⊗I]+Π4,9(I⊗E2+E2⊗I)
+Π4,10[I⊗(E2S+SE2)+(E2S+SE2)⊗I]+Π5,5S⊗S
+Π5,6(S⊗S2+S2⊗S)+Π5,7(S⊗E+E⊗S)

+Π5,8[S⊗(ES+SE)+(ES+SE)⊗S]+Π5,9(S⊗E2+E2⊗S)

+Π5,10[S⊗(E2S+SE2)+(E2S+SE2)⊗S]+Π6,6S
2⊗S2

+Π6,7(S2⊗E+E⊗S2)+Π6,8[S2⊗(ES+SE)

+(ES+SE)⊗S2]+Π6,9(S2⊗E2+E2⊗S2)

+Π6,10[S2⊗(E2S+SE2)+(E2S+SE2)⊗S2]

+Π7,7E⊗E+Π7,8[E⊗(ES+SE)+(ES+SE)⊗E]

+Π7,10[E⊗(E2S+SE2)+(E2S+SE2)⊗E]

+Π8,8(ES+SE)⊗(ES+SE)

+Π8,9[E2⊗(ES+SE)+(ES+SE)⊗E2]

+Π8,10[(ES+SE)⊗(E2S+SE2)+(E2S+SE2)⊗(ES+SE)]

+Π9,9E
2⊗E2+Π9,10[E2⊗(E2S+SE2)+(E2S+SE2)⊗E2]

+Π10,10(E2S+SE2)⊗(E2S+SE2),
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where we use the notation Πi,j = ∂2Π
∂Ii∂Ij

, i, j = 1, . . . , 10, and where the com-
ponents of the fourth order tensors SSS , EEE (1) and EEE (2) are defined (in Cartesian
coordinates) through

Sijkl =
1

2
(δkiSlj + Sikδjl + δilSkj + Silδjk),(7.6)

E
(1)
ijkl =

1

2
(Eikδjl + δikElj + Eilδjk + δilEkj),(7.7)

E
(2)
ijkl =

1

2
(
(2)

E ik δjl + δik
(2)

E lj +
(2)

E il δjk + δil
(2)

E kj),(7.8)

where

(7.9)
(2)

E ij= EimEmj .

On the other hand, from (7.3) and (7.4) we obtain

(7.10)
1

2

(
∂2Π

∂S∂E
+

∂2Π

∂E∂S

)
= Π7III + Π8SSS + Π9EEE

(1) +
Π10

2
(HHH (1) + HHH (2)) + Π1,4I⊗ I

+ Π2,7E⊗E + Π3,9E
2 ⊗E2 + Π5,7S⊗ S + Π6,8S

2 ⊗ S2

+ Π8,9(ES + SE)⊗ (ES + SE) +
1

2
(Π2,4 + Π1,7)(I⊗E + E⊗ I)

+
1

2
(Π3,4 + Π1,9)(I⊗E2 + E2 ⊗ I) +

1

2
(Π4,7 + Π1,5)(I⊗ S + S⊗ I)

+
1

2
(Π4,8 + Π1,6)(I⊗ S2 + S2 ⊗ I) +

1

2
(Π4,9 + Π1,8)[I⊗ (ES + SE)

+ (ES + SE)⊗ I] +
Π4,10

2
[I⊗ (ES2 + S2E) + (ES2 + S2E)⊗ I]

+
1

2
(Π2,5 + Π7,7)(E⊗ S + S⊗E) +

1

2
(Π3,5 + Π7,9)(S⊗E2 + E2 ⊗ S)

+
1

2
(Π5,8 + Π6,7)(S⊗ S2 + S2 ⊗ S) +

1

2
(Π6,9 + Π8,8)[S2 ⊗ (ES + SE)

+ (ES + SE)⊗ S2] +
Π6,10

2
[S2 ⊗ (ES2 + S2E) + (ES2 + S2E)⊗ S2]

+
1

2
(Π3,7 + Π2,9)(E2 ⊗E + E⊗E2) +

Π7,8

2
(E⊗ S2 + S2 ⊗E)

+
1

2
(Π7,9 + Π2,8)[E⊗ (ES + SE) + (ES + SE)⊗E]

+
1

2
(Π3,8 + Π9,9)[E2 ⊗ (ES + SE) + (ES + SE)⊗E2]
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+
Π7,8

2
[S⊗ (ES + SE) + (ES + SE)⊗ S] +

Π8,9

2
(S2 ⊗E2 + E2 ⊗ S2)

+
Π8,10

2
[(ES + SE)⊗ (ES2 + S2E) + (ES2 + S2E)⊗ (ES + SE)]

+
Π9,10

2
[E2 ⊗ (ES2 + S2E) + (ES2 + S2E)⊗E2]

+
Π1,10

2
[I⊗ (E2S + SE2) + (E2S + SE2)⊗ I]

+
Π2,10

2
[E⊗ (E2S + SE2) + (E2S + SE2)⊗E]

+
Π3,10

2
[E2 ⊗ (E2S + SE2) + (E2S + SE2)⊗E2]

+
Π7,10

2
[S⊗ (E2S + SE2) + (E2S + SE2)⊗ S]

+
Π8,10

2
[S2 ⊗ (E2S + SE2) + (E2S + SE2)⊗ S2]

+
Π9,10

2
[(ES + SE)⊗ (E2S + SE2) + (E2S + SE2)⊗ (ES + SE)]

+
Π10,10

2
[(ES2 + S2E)⊗ (E2S + SE2) + (E2S + SE2)⊗ (ES2 + S2E)],

where the components of the fourth order tensors HHH (1) and HHH (2) are defined in
Cartesian tensor components as:

H
(1)
ijkl =

1

2
(δkiElmSmj + EikSlj + SikElj + SimEmkδlj(7.11)

+ δilEkmSmj + EilSkj + SilEkj + SimEmlδjk),

H
(2)
ijkl =

1

2
(δkiSlmEmj + SikElj + EikSlj + EimSmkδlj(7.12)

+ δilSkmEmj + SilEkj + EilSkj + EimSmlδjk).

Replacing (7.5) and (7.10) in (3.1) we can obtain an explicit expression for
the implicit constitutive relation for isotropic bodies. For the sake of brevity we
do not do that here.

Appendix B. Implicit constitutive relations for isotropic bodies.
Case of small gradient of the displacement field

In this appendix we study the case when the gradient of the displacement
field is small, i.e., the case

∣∣ ∂u
∂X

∣∣ ∼ O(δ), δ � 1. In this case we do not distinguish
between the current and the reference configurations, as well as this, we have
the approximations E ≈ ε and S ≈ T.
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Neglecting terms of order δ2 or higher for ε in (7.5) we obtain

(7.13)
∂2Π

∂T∂T

≈ Π5III + Π6SSS + Π8EEE
(1) + Π4,4I⊗ I + (Π4,5 + Π7,9)(I⊗T + T⊗ I)

+ Π4,6(I⊗T2 + T2 ⊗ I) + Π4,7(I⊗ ε+ ε⊗ I)

+ Π4,8[I⊗ (εT + Tε) + (εT + Tε)⊗ I]

+ Π5,5T⊗T + Π5,6(T⊗T2 + T2 ⊗T)

+ Π5,7(T⊗ ε+ ε⊗T) + Π5,8[T⊗ (εT + Tε) + (εT + Tε)⊗T]

+ Π6,6T
2 ⊗T2 + Π6,7(T2 ⊗ ε+ ε⊗T2)

+ Π6,8[T2 ⊗ (εT + Tε) + (εT + Tε)⊗T2],

and doing the same in (7.10) we have

(7.14)
1

2

(
∂2Π

∂T∂ε
+

∂2Π

∂ε∂T

)
≈ Π7III + Π8SSS + Π9EEE

(1) +
Π10

2
(HHH (1) + HHH (2)) + Π1,4I⊗ I

+ Π5,7T⊗T + Π6,8T
2 ⊗T2 +

1

2
(Π2,4 + Π1,7)(I⊗ ε+ ε⊗ I)

+
1

2
(Π4,7 + Π1,5)(I⊗T + T⊗ I) +

1

2
(Π4,8 + Π1,6)(I⊗T2 + T2 ⊗ I)

+
1

2
(Π4,9 + Π1,8)[I⊗ (εT + Tε) + (εT + Tε)⊗ I]

+
Π4,10

2
[I⊗ (εT2 + T2ε) + (εT2 + T2ε)⊗ I]

+
1

2
(Π2,5 + Π7,7)(ε⊗T + T⊗ ε) +

1

2
(Π5,8 + Π6,7)(T⊗T2 + T2 ⊗T)

+
1

2
(Π6,9 + Π8,8)[T2 ⊗ (εT + Tε) + (εT + Tε)⊗T2]

+
Π6,10

2
[T2 ⊗ (εT2 + T2ε) + (εT2 + T2ε)⊗T2] +

Π7,8

2
(ε⊗T2 + T2 ⊗ ε)

+
Π7,8

2
[T⊗ (εT + Tε) + (εT + Tε)⊗ ε].

In (7.13), (7.14) and thereafter the fourth order tensor SSS , EEE (1), HHH (1) and HHH (2)

are defined as in (7.6), (7.7), (7.11) and (7.12), replacing S by T and E by ε.
From (7.1), (7.2) we have the approximations:

I1 ≈ tr ε, I2 ≈ 0, I3 ≈ 0, I4 ≈ trT, I5 ≈
1

2
tr(T2), I6 ≈

1

3
tr(T3),(7.15)

I7 ≈ tr(εT), I8 ≈ tr(εT2), I9 ≈ 0, I10 ≈ 0,(7.16)
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as a result:

Π7,9 = 0, Π9 = 0, Π10 = 0, Π2,4 = 0, Π4,9 = 0, Π4,10 = 0,(7.17)
Π2,5 = 0, Π6,9 = 0, Π6,10 = 0,(7.18)

thus

(7.19) Π = Π(I1, I4, I5, I6, I7, I8),

and using this in (7.14) it becomes

(7.20)
1

2

(
∂2Π

∂T∂ε
+

∂2Π

∂ε∂T

)
= Π7III + Π8SSS + Π1,4I⊗ I + Π5,7T⊗T + Π6,8T

2 ⊗T2

+
Π1,7

2
(I⊗ ε+ ε⊗ I) +

1

2
(Π4,7 + Π1,5)(I⊗T + T⊗ I)

+
1

2
(Π4,8 + Π1,6)(I⊗T2 + T2 ⊗ I) +

Π1,8

2
[I⊗ (εT + Tε)

+ (εT + Tε)⊗ I] +
Π7,7

2
(ε⊗T + T⊗ ε)

+
1

2
(Π5,8 + Π6,7)(T⊗T2 + T2 ⊗T) +

Π8,8

2
[T2 ⊗ (εT + Tε)

+ (εT + Tε)⊗T2] +
Π7,8

2
(ε⊗T2 + T2 ⊗ ε)

+
Π7,8

2
[T⊗ (εT + Tε) + (εT + Tε)⊗ ε].

In the case
∣∣ ∂u
∂X

∣∣ ∼ O(δ), δ � 1 since E ≈ ε and S ≈ T Eq. (3.1) can be
approximated as

(7.21)
[

1

2

(
∂2Π

∂T∂ε
+

∂2Π

∂ε∂T

)
−III

]
: ε̇+

∂2Π

∂T∂T
: Ṫ = 0,

and using (7.13) and (7.20) in the above expression we have (see also the as-
sumptions that leads to (7.23) below):

(7.22)
[
Π7III + Π8SSS + Π1,4I⊗ I + Π5,7T⊗T + Π6,8T

2 ⊗T2

+
1

2
(Π4,7 + Π1,5)(I⊗T + T⊗ I) +

1

2
(Π4,8 + Π1,6)(I⊗T2 + T2 ⊗ I)

+
1

2
(Π5,8 + Π6,7)(T⊗T2 + T2 ⊗T)−III

]
: ε̇
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+ {Π5III + Π6SSS + Π8EEE
(1) + Π4,4I⊗ I + Π4,5(I⊗T + T⊗ I)

+ Π4,6(I⊗T2 + T2 ⊗ I) + Π4,7(I⊗ ε+ ε⊗ I)

+ Π4,8[I⊗ (εT + Tε) + (εT + Tε)⊗ I] + Π5,5T⊗T

+ Π5,6(T⊗T2 + T2 ⊗T) + Π5,7(T⊗ ε+ ε⊗T)

+ Π5,8[T⊗ (εT + Tε) + (εT + Tε)⊗T] + Π6,6T
2 ⊗T2

+ Π6,7(T2 ⊗ ε+ ε⊗T2)

+ Π6,8[T2 ⊗ (εT + Tε) + (εT + Tε)⊗T2]} : Ṫ = 0.

We assume that |ε̇| ∼ O(δ∗), δ∗ � 1. The above makes sense if we first divide
ε̇ by some characteristic value, which is denoted εt. One possible expression for
that can be εt =

√
g
L , where L is a characteristic length for a given boundary

value problem and g is the gravitational constant. In such a case the dimen-
sionless strain rate can be defined as

√
L
g ε̇. We use the same notation for that

dimensionless strain rate.
For the fourth order tensor that appears in the inner product with ε̇ (see the

first square bracket in (7.22)) we demand it does not depend on ε, whereas for the
fourth order tensor that appears in a double contraction with Ṫ we demand it can
be at most a linear expression in ε. Sufficient conditions for the above restrictions
to hold are (recall the original expressions for ∂2Π

∂T∂T and 1
2

(
∂2Π
∂T∂ε + ∂2Π

∂ε∂T

)
given

in (7.13) and (7.20)):

(7.23) Π1,7 = 0, Π1,8 = 0, Π7,7 = 0, Π8,8 = 0, Π7,8 = 0,

and

(7.24) Π8, Π4,7, Π4,8, Π5,7, Π5,8, Π6,7, Π6,8 are constant in ε.

A function Π that satisfies the above restrictions is

Π(I1, I4, I5, I6, I7, I8) = f(I4, I5, I6)I1 + g(I4, I5, I6)I7(7.25)
+ h(I4, I5, I6)I8 + p(I4, I5, I6).

Replacing (7.25) in (7.22) we obtain

(7.26)
[
gIII + hSSS + f4I⊗ I + g5T⊗T + h6T

2 ⊗T2

+
1

2
(g4 + f5)(I⊗T + T⊗ I) +

1

2
(h4 + f6)(I⊗T2 + T2 ⊗ I)

+
1

2
(h5 + g6)(T⊗T2 + T2 ⊗T)−III

]
: ε̇

+ {(f5I1 + g5I7 + h5I8 + p5)III + (f6I1 + g6I7 + h6I8 + p6)SSS + hEEE (1)
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+ (f4,4I1 + g4,4I7 + h4,4I8 + p4,4)I⊗ I

+ (f4,5I1 + g4,5I7 + h4,5I8 + p4,5)(I⊗T + T⊗ I)

+ (f4,6I1 + g4,6I7 + h4,6I8 + p4,6)(I⊗T2 + T2 ⊗ I)

+ g4(I⊗ ε+ ε⊗ I) + h4[I⊗ (εT + Tε) + (εT + Tε)⊗ I]

+ (f5,5I1 + g5,5I7 + h5,5I8 + p5,5)T⊗T

+ (f5,6I1 + g5,6I7 + h5,6I8 + p5,6)(T⊗T2 + T2 ⊗T)

+ g5(T⊗ ε+ ε⊗T) + h5[T⊗ (εT + Tε) + (εT + Tε)⊗T]

+ (f6,6I1 + g6,6I7 + h6,6I8 + p6,6)T2 ⊗T2 + g6(T2 ⊗ ε+ ε⊗T2)

+ h6[T2 ⊗ (εT + Tε) + (εT + Tε)⊗T2]} : Ṫ = 0,

where we have used the notation fi = ∂f
∂Ii

, gi = ∂g
∂Ii

, hi = ∂h
∂Ii

, pi = ∂p
∂Ii

and

fi,j = ∂2f
∂Ii∂Ij

, gi,j = ∂2g
∂Ii∂Ij

, hi,j = ∂2h
∂Ii∂Ij

, pi,j = ∂2p
∂Ii∂Ij

.

Appendix C. A subclass wherein the stresses appear linearly for the
expressions associated with the functions f, g and h

In this section we study (7.26) in the particular case the stresses appear
linearly for the expressions associated with the functions f, g and h. That is
possible if we assume that the functions f(I4, I5, I6), g(I4, I5, I6) and h(I4, I5, I6)
defined in (7.25) are given as (recall (7.15), (7.16)):

f(I4, I5, I6) = f(0) + f(1)I4 + f(2) I
2
4

2
+ f(3)I5, g(I4, I5, I6) = g(0) + g(1)I4,(7.27)

h(I4, I5, I6) = h(0),(7.28)

where f(0), f(1), f(2), f(3), g(0), g(1) and h(0) are constants. Here we assume that
p = p(I4, I5, I6).

Using (7.27) and (7.28) in (7.26) after some manipulations we obtain

(7.29) (g(0) − 1)ε̇+ g(1)[(trT)ε̇+ (tr Ṫ)ε] + h(0)(Tε̇+ ε̇T + εṪ + Ṫε)

+ f(1)(tr ε̇)I + f(2)[(trT)(tr ε̇) + (tr ε)(tr Ṫ)]I

+

[
(g(1) + f(3))

2
tr(Tε̇) + g(1) tr(εṪ)

]
I

+

[
(g(1) + f(3))

2
(tr ε̇)T + f(3)(tr ε)Ṫ

]
+

˙
p4I + p5T + p6T2 = 0.

In the above relation the number of material constants can be reduced if we
divide the whole expression by g(0) − 1 (assuming that g(0) 6= 1). We do so and
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do not use a different notation for the remaining constants, and also for the
derivatives of the functions p.

In order to obtain (3.4) we assume that

(7.30) g(1) = f(3) = q(0),

where q(0) is a constant. In this case (7.29) can be integrated in time, and we
obtain (3.4), where on the right side of (7.29) after integration we have a constant,
which for simplicity we assume to be zero.
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