PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Different Nitriding Methods on Nitrided Layer Structure and Morphology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a comparison of the nitrided layer structure and morphology formed with a conventional controlled gas method, widely use in industrial applications and a layer formed with cathode plasma nitriding (CPN) and active screen plasma nitriding (ASPN). Nitriding processes were realized at 793K for different times and altering parameters, depending on the nitriding process technique. Research have been realized on the Fe Armco material using light microscopy (LM), scanning electron microscopy (SEM, SEM/EBSD), X-ray diffraction (XRD-GID) and atomic force microscopy (AFM). Analysis of the results has confirmed that the structure of the nitrided layer depends mainly on process methodology. In addition Authors has also analyzed kinetics of the process which varies and depends mainly from the surface layer saturation mechanism and nitriding parameters. Acquired knowledge on the structural components of the nitrided layer made it possible to optimize the nitriding parameters in order to reduce or even eliminate the usually unfavorable, brittle compounds and porous zones and of the nitrided layer in the aspect of exploitation properties improvement of the metallic materials.
Twórcy
  • Czestochowa University of Technology, Logistics and International Management Institute, Av. Armii Krajowej 19b, 42-200 Częstochowa, Poland
autor
  • Czestochowa University of Technology, Materials Science Institute, Av. Armii Krajowej 19a, 42-200 Częstochowa, Poland
autor
  • National Centre For Nuclear Research, St. A. Soltana 7/23, Otwock-Swierk, Poland
autor
  • Czestochowa University of Technology, Materials Science Institute, Av. Armii Krajowej 19a, 42-200 Częstochowa, Poland
autor
  • AGH University of Science and Technology Cracow, Department of Materials Science and Ceramics, Al. Mickiewicza 30, 30-059 Kraków
Bibliografia
  • [1] T. Burakowski, T. Wierzchon, Surface Engineering of Metals, 1995 WNT Editors, Warsaw.
  • [2] J. Michalski, J. Iwanow, J. Tacikowski, I. Sułkowski, P. Wach, T. N. Tarfa, J. Tymowski, Anti-corrosion nitriding, with post-oxidation and inhibitor impregnation, and its industrial applications, H. Treat. Met. 31, 31-35 (2004).
  • [3] J. Tacikowski, J. Zysk, Controlled gas nitriding NITREG, Metal Science and Heat Treatment 63, 26-29 (1983) (in polish).
  • [4] J. Zysk (Ed.), The iron alloys gas nitriding development, 2008 IMP Editors, Warsaw (in polish).
  • [5] D. K. Inia, A. M. Vredenberg, F. H. P. M. Habraken, D. O. Boerma, Nitrogen uptake and rate limiting step in low-temperature nitriding of iron, J. Appl. Phys. 86, 810-816 (1999).
  • [6] T. Czerwiec, H. Michel, E. Bergmann, Low-pressure, high-density plasma nitriding: mechanisms, technology and results, Surf. Coat. Tech. 109, 182-190 (1998).
  • [7] K. J. B. Ribeiro, R. R. M. De Sousa, F. O. De Araujo, R. A. De Brito, J. C. P. Barbosa, C. Alves Jr., Industrial application of AISI 4340 steels treated in cathodic cage plasma nitriding technique, Mat. Sci. Eng. A 479, 142-147 (2008).
  • [8] T. Wierzchon, I. Ulbin-Pokorska, K. Sikorski, J. Trojanowski, Properties of multicomponent surface layers produced on steels by modified plasma nitriding processes, Vac. 53, 473-479 (1999).
  • [9] D. Moszynski, I. Moszynska, W. Arabczyk, Iron nitriding and reduction of iron nitrides in nanocrystalline Fe-N system, Mat. Lett. 78, 32-34 (2012).
  • [10] J. Baranowska, K. Szczecinski, M. Wysiecki, Growth of nitride layer after cathode sputtering, Vac. 70, 293-297 (2003).
  • [11] C. A. Figueroa, F. T. Alvarez, New pathways in plasma nitriding of metal alloys, Surf. Coat. Tech. 200, 498-501 (2005).
  • [12] S. Corujeira Gallo, H. Dong, New insights into the mechanism of low-temperature active-screen plasma nitriding of austenitic stainless steel, Scri. Mater. 67, 89-91 (2012).
  • [13] X. L. Wu, W. Zhong, N. J. Tang, H. Y. Jiang, W. Liu, Y. W. Du, Magnetic properties and thermal stability of nanocrystalline ε-Fe3N prepared by gas reduction-nitriding method, J. Alloys Compd. 385, 294-297 (2004).
  • [14] S. A. Gerasimov, V. A. Golikov, M. A. Gress, G. G. Mukhin, V. I. Snop, High-pressure gas nitriding of steels, Met. Sci. Heat Treat. 46, 227-229 (2004).
  • [15] T. Fraczek, M. Olejnik, J. J. Jasinski, Unconventional short-term glow discharge nitriding of 316L austenitic steel, Mat. Sci. Forum 654-656, 366-369 (2010).
  • [16] X. Xiaolei, W. Liang, Y. Zhiwei, H. Zukun, A comparative study on microstructure of the plasma nitrided layers on austenitic stainless steel and pure Fe, Surf. Coat. Tech. 192, 220-224 (2005).
  • [17] S. C. Gallo, H. H. Dong, Study of active screen plasma processing conditions for carburising and nitriding austenitic stainless steel, Surf. Coat. Tech. 203, 3669-3675 (2009).
  • [18] A. Nishimoto, K. Nagatsuka, R. Narita, H. Nii, K. Akamatsu, Effect of the distance between screen and sample on active screen plasma nitriding properties, Surf. Coat. Tech. 205, 365-368 (2010).
  • [19] M. Kulka, P. Dziarski, N. Makuch, A. Piasecki, A. Miklaszewski, Microstructure and properties of laser-borided Inconel 600-alloy, Appl. Surf. Sci. 284, 757-771 (2013).
  • [20] P. Hubbard, J. G. Partridge, E. D. Doyle, G. D. McCulloch, M. B. Taylor, S. J. Dowey, Investigation of nitrogen mass transfer within an industrial plasma nitriding system I: The role of Surface deposits, Surf. Coat. Tech. 204, 1145-1150 (2010).
  • [21] A. Sokolowska, J. Rudnicki, P. Beer, L. Maldzinski, J. Tacikowski, J. Baszkiewicz, Nitrogen transport mechanisms in low temperaturę ion nitriding, Surf. Coat. Tech. 142-144, 1040-1045 (2001).
  • [22] Y. D. Kogan, V. E. Kol’tsov, Effect of plasma nitriding on mechanical properties of refractory metals and alloys: nitriding in engineering, Transactions MADI 174, 135-145 (1979).
  • [23] Y. M. Lakhtin, Y. D. Kogan, Gas nitriding of engineering components and tools, Mashinostroenie Moscow, 60 (1982).
  • [24] T. Fraczek, M. Olejnik, J. J. Jasiński, Z. Skuza, Short-term low-temperature glow discharge nitriding of 316L austenitic steel, Metal. 50, 151-154 (2011).
  • [25] H. J. Spies, H. L. Thien, H. Biermann, Verhalten von Staehlen beim Plasmanitrieren mit einem Aktivgitter (Behaviour of steels in active screen plasma nitriding), HTM Z Werkst. Warme. Fertig. 60, 1-8 (2005).
  • [27] L. Lefevre, T. Belmonte, T. Czerwiec, A. Ricard, H. Michel, Measurements of nitrogen atom loss probability versus temperaturę on iron surfaces, Surf. Coat. Tech. 116-119, 1244-1248 (1999).
  • [28] D. Nolan, V. Leskovsek, M. Jenko, Estimation of fracture toughness of nitride compound layers on tool steel by application of the Vickers indentation method Surf. Coat. Tech. 201, 182-188 (2006).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76feb55f-9b8f-4707-a7bf-9db5e00c057e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.