PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zrównoważony proces toryfikacji miskantusa stosowanego jako biopaliwo stałe, biowęgiel oraz nośnik do nawozów organicznych

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Biomasa otrzymywana z roślin energetycznych bardzo często wymaga przetworzenia przed jej ostatecznym wykorzystaniem. W niniejszej pracy przedstawiono wyniki badań związanych z przetwarzaniem miskantusa. Przeprowadzono badania w skali laboratoryjnej nad procesem toryfikacji tego typu biomasy. Analizy laboratoryjne zostały skupione na procesie toryfikacji, początkowo z wykorzystaniem technik TGA i DSC (do oceny energii aktywacji (EA), a następnie reaktora przepływowego, pracującego na pięciu poziomach temperatury (225, 250, 275, 300 i 525℃). Przeprowadzono analizę SEM-EDS miskantusa po procesach toryfikacji w trzech różnych temperaturach. Analiza procesu toryfikacyjnego pokazuje wyraźnie, że optymalna temperatura procesu z punktu widzenia współczynnika strat masy oraz perspektywy ekonomicznej wynosiłaby około 300–340℃. Praca ta wyraźnie pokazuje, że miskantus jest bardzo ciekawym materiałem zarówno w produkcji peletów, jak i w dalszej przeróbce, wykorzystywanym nie tylko jako nośnik energii, ale także jako nowy rodzaj źródła węgla w mieszankach nawozowych, gdzie przedstawiono go jako nośnik dla nawozów organicznych.
Słowa kluczowe
Rocznik
Tom
Strony
223--242
Opis fizyczny
Bibliogr. 80 poz., fot., rys., tab., wykr.
Twórcy
  • Politechnika Łódzka, Wydział Inżynierii Procesowej i Ochrony Środowiska
autor
  • Politechnika Łódzka, Wydział Inżynierii Procesowej i Ochrony Środowiska, Katedra Inżynierii Środowiska
Bibliografia
  • [1] Karbowniczak A., Hamerska J., Wróbel M., Jewiarz M., Nęcka K., Evaluation of selected species of woody plants in terms of suitability for energy production, [w:] Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy ICORES 2017, eds. Mudryk, K., Werle, S., Springer Proceedings in Energy 2018, 735-742. DOI: 10.1007/978-3-319-72371-6_72.
  • [2] Robbins M.P., Evans G., Valentine J., Donnison I.S., Allison G.G., New opportunities for the exploitation of energy crops by thermochemical conversion in northern Europe and the UK, Progress in Energy and Combustion Science 2012, 38(2), 138-155, 2012. DOI: 10.1016/j.pecs.2011.08.001.
  • [3] Telmo C., Lousada J., Heating values of wood pellets from different species, Biomass and Bioenergy 2011, 35(7), 2634-2639. DOI: 10.1016/j.biombioe.2011.02.043.
  • [4] Filbakk T., Jirjis R., Nurmi J., Høibø O., The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets, Biomass and Bioenergy 2011, 35(8), 3342-3349. DOI: 10.1016/j.biombioe.2010.09.011.
  • [5] Križan P., Matúš M., Šooš L., Beniak J., Behavior of beech sawdust during densification into a solid biofuel, Energies 2015, 8(7), 6382-6398. DOI: 10.3390/en8076382.
  • [6] Lewandowski I., Clifton-Brown J.C., Scurlock J.M.O., Huisman W., Miscanthus: European experience with a novel energy crop, Biomass and Bioenergy 2000, 19(4), 209-227. DOI: 10.1016/S0961-9534(00)00032-5.
  • [7] Lewandowski I., Scurlock J.M.O., Lindvall E., Christou M., The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe, Biomass and Bioenergy 2003, 25(4), 335-361. DOI: 10.1016/S0961-9534(03)00030-8.
  • [8] Khomina V., Trach I., Semenyshyna I., Koberniuk O., Mudryk K., Jewiarz M., Wróbel M., Styks J., Potential of soybean straw in Ukraine and solid biofuel production, [w:] Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy ICORES 2018, eds. Wróbel M., Jewiarz M., Szlęk A., Springer Proceedings in Energy 2020, 163-170. DOI: 10.1007/978-3-030-13888-2_15.
  • [9] Hebda T., Brzychczyk B., Francik S., Pedryc N., Evaluation of suitability of hazelnut shell energy for production of biofuels, [w:] Proceedings of the Engineering for Rural Development 2018, 17, 1860-1865. DOI: 10.22616/ERDev2018.17.N437.
  • [10] García R., Gil M. V., Rubiera F., Pevida C., Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets, Fuel 2019, 251, 739-753. DOI: 10.1016/j.fuel.2019.03.141.
  • [11] Zamorano M., Popo, V., Rodríguez M.L., García-Maraver A., A comparative study of quality properties of pelletized agricultural and forestry lopping residues, Renewable Energy 2011, 36, 3133-3140. DOI: 10.1016/j.renene.2011.03.020.
  • [12] Bryś A., Zielińska J., Głowacki S., Tulej W., Bryś J., Analysis of possibilities of using biomass from cherry and morello cherry stones for energy purposes, 6th International Conference - Renewable Energy Sources (ICoRES 2019), E3S Web Conference 2020, 154, 01005. DOI: 10.1051/e3sconf/202015401005.
  • [13] Zawiślak K., Sobczak P., Kraszkiewicz A., Niedziółka I., Parafiniuk S., Kuna-Broniowska I., Tanaś W., Żukiewicz-Sobczak W., Obidziński S., The use of lignocellulosic waste in the production of pellets for energy purposes, Renewable Energy 2020, 145, 997-1003. DOI: 10.1016/j.renene.2019.06.051.
  • [14] Rezania S., Ponraj M., Din M.F.M., Songip A.R., Sairan F.M., Chelliapan S., The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview, Renewable and Sustainable Energy Reviews 2015, 41, 943-954. DOI: 10.1016/j.rser.2014.09.006.
  • [15] Davies R., Ignition and burning rate of water hyacinth briquettes, Journal of Scientific Research and Reports 2013, 2, 111-120. DOI: 10.9734/JSRR/2013/1964.
  • [16] Benemann J., Microalgae for biofuels and animal feeds, Energies 2013, 6(11), 5869-5886. DOI: 10.3390/en6115869.
  • [17] ISO 17225-1:2014 Solid biofuels - Fuel specifications and classes - Part 1: General requirements; International Organization for Standardization: Geneva, Switzerland 2014.
  • [18] Knapczyk A., Francik S., Wójcik A., Bednarz G., Influence of storing miscanthus x gigantheus on its mechanical and energetic properties, [w:] Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy ICORES 2017, eds. Mudryk K., Werle S., Springer Proceedings in Energy 2018, 651-660. DOI: 10.1007/978-3-319-72371-6_64,.
  • [19] Manouchehrinejad M., Yue Y., de Morais R.A.L., Souza L.M.O., Singh H., Mani S., Densification of Thermally Treated Energy Cane and Napier Grass. Bioenergy Res. 11, 538-550, 2018.
  • [20] Theerarattananoon K., Xu F., Wilson J., Ballard R., Mckinney L., Staggenborg S., Vadlani P., Pei Z.J., Wang D., Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem, Industrial Crops and Products 2011, 33(2), 325-332. DOI: 10.1016/j.indcrop.2010.11.014.
  • [21] White R.H., Effect of lignin content and extractives on the higher heating value of wood, Wood and Fiber Science 1987, 19(4), 446-452.
  • [22] Demirbaş A., Relationships between heating value and lignin, fixed carbon, and volatile material contents of shells from biomass products, Energy Sources 2003, 25, 629-635. DOI: 10.1080/00908310390212336.
  • [23] Demirbas A., Higher heating values of lignin types from wood and non-wood lignocellulosic biomasses, Energy Sources, Part A: Recovery, Utilization and Environmental Effects 2017, 39(6), 592-598. DOI: 10.1080/15567036.2016.1248798.
  • [24] Wróbel M., Mudryk K., Jewiarz M., Głowacki S., Tulej W., Characterization of selected plant species in terms of energetic use, [w:] Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy ICORES 2017, Eds. Mudryk K., Werle S., Springer Proceedings in Energy 2018, 671-681. DOI: 10.1007/978-3-319-72371-6_66.
  • [25] Prosiński S., Chemia drewna, PWRiL, Warszawa 1984.
  • [26] Bryś A., Bryś J., Głowacki S., Tulej W., Zajkowski P., Sojak M., Analysis of potential related to grass-derived biomass for energetic purposes, [w:] Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy ICORES 2017, Eds. Mudryk K., Werle S., Springer Proceedings in Energy 2018, 443-450. DOI: 10.1007/978-3-319-72371-6_43.
  • [27] Nielsen H.K., Lærke P.E., Liu N., Jørgense, U., Sampling procedure in a willow plantation for estimation of moisture content, Biomass and Bioenergy 2015, 78, 62-70. DOI: 10.1016/j.biombioe.2015.03.028.
  • [28] Stelte W., Sanadi A.R., Shang L., Holm J.K., Ahrenfeldt J., Henriksen U.B., Recent developments in biomass pelletization - a review, Bioresources 2012, 7(3), 4451-4490. DOI: 0.15376/biores.7.3.4451-4490.
  • [29] Larsson S.H., Thyrel M., Geladi P., Lestander T.A., High quality biofuel pellet production from pre-compacted low density raw materials, Bioresource Technology 2008, 99(15), 7176-7182. DOI: 10.1016/j.biortech.2007.12.065.
  • [30] Kubica K., Jewiarz M., Kubica R., Szlęk A., Straw combustion: Pilot and laboratory studies on a straw-fired grate boiler, Energy and Fuels 2016, 30, 4405-4410. DOI: 10.1021/acs.energyfuels.5b02693.
  • [31] Dong L., Gao S., Xu G., No reduction over biomass char in the combustion process, Energy and Fuels 2010, 24, 446-450. DOI: 10.1021/ef900913p.
  • [32] González J.F., González-Garcı́a C.M., Ramiro A., González J., Sabio E., Gañán J., Rodrı́guez M.A., Combustion optimisation of biomass residue pellets for domestic heating with a mural boiler, Biomass and Bioenergy 2004, 27, 145-154. DOI: 10.1016/j.biombioe.2004.01.004.
  • [33] Ryu C., Yang Y., Bin Khor A., Yates N.E., Sharifi V.N., Swithenban, J., Effect of fuel properties on biomass combustion: Part I. Experiments - Fuel type, equivalence ratio and particle size, Fuel 2006, 85, 1039-1046. DOI: 10.1016/j.fuel.2005.09.019.
  • [34] Shaw M.D., Karunakaran C., Tabil L.G., Physicochemical characteristics of densified untreated and steam exploded poplar wood and wheat straw grinds, Biosystems Engineering 2009, 103(2), 198-207. DOI: 10.1016/j.biosystemseng.2009.02.012.
  • [35] Tumuluru J., Effect of moisture content and hammer mill screen size on the briquetting characteristics of woody and herbaceous biomass, KONA Powder and Particle Journal 2019, 36, 241-251. DOI: 10.14356/kona.2019009.
  • [36] Francik S., Knapczyk A., Knapczyk A., Francik R., Decision support system for the production of miscanthus and willow briquettes, Energies 2020, 13, 1364. DOI: 10.3390/en13061364.
  • [37] Kaliyan N., Vance Morey R., Factors affecting strength and durability of densified biomass products, Biomass and Bioenergy 2009, 33, 337-359. DOI: 10.1016/j.biombioe.2008.08.005.
  • [38] Dyjakon A., Noszczyk T., The influence of freezing temperature storage on the mechanical durability of commercial pellets from biomass, Energies 2019, 12, 2627. DOI: 10.3390/en12132627.
  • [39] Serrano C., Monedero E., Lapuerta M., Portero H., Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets, Fuel Processing Technology 2011, 92, 699-706. DOI: 10.1016/j.fuproc.2010.11.031.
  • [40] Pietsch W., Agglomeration processes. Phenomena, Technologies, Equipment, Wiley-VCH Verlag GmBH., Weinheim 2002.
  • [41] Styks J., Wróbel M., Frączek J., Knapczyk A., Effect of compaction pressure and moisture content on quality parameters of perennial biomass pellets, Energies, 13, 1859, 2020. DOI: 10.3390/en13081859.
  • [42] Puig-Arnavat M., Shang L., Sárossy Z., Ahrenfeld, J., Henriksen U.B., From a single pellet press to a bench scale pellet mill - Pelletizing six different biomass feedstocks, Fuel Processing Technology 2016, 142, 27-33. DOI: 10.1016/j.fuproc.2015.09.022.
  • [43] Wróbel M., Jewiarz M., Mudryk K., Knapczyk A., Influence of raw material drying temperature on the scots pine (Pinus sylvestris L.) Biomass Agglomeration Process - A Preliminary Study, Energies 2020, 13, 1809. DOI: 10.3390/en13071809.
  • [44] Zafari A., Kianmehr M.H., Factors affecting mechanical properties of biomass pellet from compost, Environmental Technology 2014, 35, 478-486. DOI: 10.1080/09593330.2013.833639.
  • [45] Peng J.H., Bi H.T., Sokhansanj S., Lim J.C., A study of particle size effect on biomass torrefaction and densification, Proceedings of the Energy and Fuels 2012, 26, 3826-3839. DOI: 10.1021/ef3004027.
  • [46] Matúš M., Križan P., Kováčová M., Beniak J., The influence of size fraction on the compressibility of pine sawdust and the effectiveness criterion for densification, Acta Polytechnica 2014, 54(1), 52-58. DOI: 10.14311/AP.2014.54.0052.
  • [47] Franke M., Rey A., Improving pellet quality and efficiency, Feed Technology 2006, 10, 12-15.
  • [48] Wróbel M., Hamerska J., Jewiarz M., Mudryk K., Niemczyk M., Influence of parameters of the torrefaction process on the selected parameters of torrefied woody biomass, [w:] Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy ICORES 2017, Eds. K. Mudryk, S. Werle, Springer Proceedings in Energy 2018, 691-700. DOI: 10.1007/978-3-319-72371-6_68.
  • [49] Mierzwa-Hersztek M., Gondek K., Jewiarz M., Dziedzic K., Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes, Journal of Material Cycles and Waste Management 2019, 21, 786-800. DOI: 10.1007/s10163-019-00832-6.
  • [50] Phanphanich M., Mani S., Impact of torrefaction on the grindability and fuel characteristics of forest biomass, Bioresource Technology 2011, 102, 1246-1253. DOI: 10.1016/j.biortech.2010.08.028.
  • [51] Bridgeman T.G., Jones J.M., Williams A., Waldron D.J., An investigation of the grindability of two torrefied energy crops, Fuel 2010, 89, 3911-3918. DOI: 10.1016/j.fuel.2010.06.043.
  • [52] Saleh S.B., Hansen B.B., Jensen P.A. Dam-Johansen K., Influence of biomass chemical properties on torrefaction characteristics, Energy & Fuels 2013, 27, 7541-7548. DOI: 10.1021/ef401788m.
  • [53] Kanwal S., Munir S., Chaudhry N., Sana H., Physicochemical characterization of Thar coal and torrefied corn cob, Energy Exploration and Exploitation 2019, 37, 1286-1305. DOI: 10.1177/0144598719834766.
  • [54] Fagernäs L., Brammer J., Wilén C., Lauer M., Verhoeff F., Drying of biomass for second generation synfuel production, Biomass and Bioenergy 2010, 34, 1267-1277. DOI: 10.1016/j.biombioe.2010.04.005.
  • [55] Frühwirth P., Graf A., Humer M., Hunger F., Kӧppl H., Liebhard P., Tumfart K., Miscanthus sinensis “Giganteus”. Chinaschilf als nachwachsender Rohstoff. Anbau, Inhaltsstoffe, Kosten, Heiztechnik, Landwirtschaftskammer Ӧsterreich, Wien 2006.
  • [56] Wróbel M., Assessment of agglomeration properties of biomass - preliminary study, [w:] Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy ICORES 2018; Eds. M. Wróbel, M. Jewiarz, A. Szlęk, Springer Proceedings in Energy 2020, 411-418.
  • [57] Wilk M., Magdziarz A., Gajek M., Zajemska M., Jayaraman K., Gokalp I., Combustion and kinetic parameters estimation of torrefied pine, acacia and Miscanthus giganteus using experimental and modelling techniques, Bioresource Technology 2017, 243, 304-314. DOI: 10.1016/j.biortech.2017.06.116.
  • [58] Eibisch N., Schroll R., Fuß R., Effect of pyrochar and hydrochar amendments on the mineralization of the herbicide isoproturon in an agricultural soil, Chemosphere 2015, 134, 528-535. DOI: 10.1016/j.chemosphere.2014.11.074.
  • [59] Cruz D.C., Production of bio-coal and activated carbon from biomass, Electron. Master’s Thesis, The University of Western Ontario, London, Canada, 2012.
  • [60] ISO 17827-2:2016 Solid biofuels - Determination of particle size distribution for uncompressed fuels - Part 2: Vibrating screen method using sieves with aperture of 3,15 mm and below; International Organization for Standardization: Geneva, Switzerland, 2016.
  • [61] ISO 17831-1:2015 Solid biofuels - Determination of mechanical durability of pellets and briquettes - Part 1: Pellets, International Organization for Standardization: Geneva, Switzerland, 2015.
  • [62] Adrian Ł., Szufa S., Piersa P., Kurowski K., Experimental research and simulation of computer processes of heat exchange in a heat exchanger working on the basis of the principle of heat pipes for the purpose of heat transfer from the ground, [w:] Proceedings of the 4th Renewable Energy Sources - Research and Business RESRB Conference, Wrocław, Poland, 8-9 July 2019, Wrocław 2019.
  • [63] Magdziarz A., Wilk M., Wądrzyk M., Pyrolysis of hydrochar derived from biomass - Experimental investigation, Fuel 2020, 267, 117246. DOI: 10.1016/j.fuel.2020.117246.
  • [64] ISO 17225-6:2014 Solid biofuels - Fuel specifications and classes - Part 6: Graded non-woody pellets; International Organization for Standardization: Geneva, Switzerland 2014.
  • [65] Gucho M.E., Shahzad K., Bramer E.A., Akhtar N., A., Brem G., Experimental study on dry torrefaction of beech wood and miscanthus, Energies 2015, 8, 3903-3923. DOI:10.3390/en8053903.
  • [66] Kruczek H., Wnukowski M., Niedzwiecki Ł., Guziałowska-Tic J., Torrefaction as a valorization method used prior to the gasification of sewage sludge, Energies 2019, 12, 175. DOI: 10.3390/en12010175.
  • [67] Bates R.B., Ghoniem A.F., Biomass torrefaction: Modeling of volatile and solid product evolution kinetics, Bioresource Technology 2012, 124, 460-469. DOI: 10.1016/j.biortech.2012.07.018.
  • [68] Szufa S., Adrian Ł., Piersa P., Romanowska-Duda Z., Ratajczyk-Szufa J., Torrefaction process of millet and cane using batch reactor, [w:] Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy ICORES 2018, eds. Wróbel M., Jewiarz M., Szlęk A., Springer Proceedings in Energy 2020, 371-379. DOI: 10.1007/978-3-030-13888-2_37.
  • [69] Szufa S., Wielgosiński G., Piersa P., Czerwińska J., Adrian Ł., Dzikuć M., Lewandowska W., Marczak M., Torrefaction of straw from Oats and Maize for use as a fuel and additive to organic fertilizers - TGA analysis, kinetics as products for agricultural purposes, Energies 2020, 13(8), 2064. DOI: 10.3390/en13082064.
  • [70] Budai A., Rasse D.P., Lagomarsino A., Lerch T.Z., Paruch L., Biochar persistence, priming and microbial responses to pyrolysis temperature series, Biology and Fertility of Soils 2016, 52, 749-761. DOI: 10.1007/s00374-016-1116-6.
  • [71] Tran K. Q., Werle S., Thuat T. Trinh, Magdziarz A., Sobek S., Pogrzeba M., Fuel characterization and thermal degradation kinetics of biomass from phytoremediation plants, Biomass and Bioenergy 2020, 134, 105469. DOI: 10.1016/j.biombioe.2020.105469.
  • [72] Dzikuć M., Kuryło P., Dudziak R., Szufa S., Dzikuć M., Godzisz K., Selected aspects of combustion optimization of coal in power plants, Energies 2020, 13(9), 2208, DOI: 10.3390/en13092208.
  • [73] Wilk M., Magdziarz A., Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus, Energy 2017, 140, 1292-1304. DOI: 10.1016/j.energy.2017.03.031.
  • [74] Szufa S., Dzikuć M., Adrian Ł., Piersa P., Romanowska-Duda Z., Marczak M., Błaszczuk A., Piwowar A., Lewandowska W., Torrefaction of oat straw to use as solid biofuel, an additive to organic fertilizers for agriculture purposes and activated carbon—TGA analysis, kinetics, 6th International Conference - Renewable Energy Sources (ICoRES 2019), E3S Web Conference 2020, 154, 02004. DOI: 10.1051/e3sconf/202015402004.
  • [75] Romanowska-Duda Z., Piotrowski K., Wolska B., Dębowski M., Zieliński M., Dziugan P., Szufa S., Stimulating effect of ash from Sorghum on the growth of Lemnaceae - A new source of energy biomass, [w:] Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy ICORES 2018, Eds. M. Wróbel, M. Jewiarz, A. Szlęk, Springer Proceedings in Energy 2020, 341-349. DOI: 10.1007/978-3-030-13888-2_34.
  • [76] Wnukowski M., Owczarek P., Niedźwiecki Ł., Wet torrefaction of miscanthus - characterization of hydrochars in view of handling, storage and combustion properties, Journal of Ecological Engineering 2015, 16(3), 161-167. DOI: 10.12911/22998993/2950.
  • [77] Szufa S., Adrian Ł., Piersa P., Romanowska-Duda Z., Grzesik M., Cebula A., Kowalczyk S., Experimental studies on energy crops torrefaction process using batch reactor to estimate torrefaction temperature and residence time, [w:] Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy ICORES 2017, Eds. K. Mudryk, S. Werle, Springer Proceedings in Energy
  • 2018, 365-373. DOI: 10.1007/978-3-319-72371-6_35.
  • [78] Junga R., Pospolita J., Niemiec P., Combustion and grindability characteristics of palm kernel shells torrefied in a pilot-scale installation, Renewable Energy 2020, 147, 1239-1250. DOI: 10.1016/j.renene.2019.09.060.
  • [79] Szufa S., Piersa P., Adrian Ł., Sielski J., Grzesik M., Romanowska-Duda Z., Piotrowski K., Lewandowska W., Acquisition of torrefied biomass from Jerusalem artichoke grown in a closed circular system using biogas plant waste, Molecules 2020, 25, 3862. DOI: 10.3390/molecules25173862.
  • [80] Szufa S., Piersa P., Adrian Ł., Czerwińska J., Lewandowski A., Lewandowska W., Sielski J., Dzikuć M., Wróbel M., Jewiarz M., Knapczyk A., Sustainable drying and torrefaction processes of Miscanthus for use as a pelletized solid biofuel and biocarbon - carrier for organic fertilizers, Molecules 2021, 26(4), 1014. DOI: 10.3390/molecules26041014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76fce60d-bf2f-40ca-bd2f-52035ee9be79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.