PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Filtr LS i jego implementacja w sterowniku systemu master-slave z siłowym sprzężeniem zwrotnym

Identyfikatory
Warianty tytułu
EN
LS filter and its implementation into the control unit of the master-slave system with force-feedback
Języki publikacji
PL
Abstrakty
PL
Systemy zdalnie sterowane z siłowym sprzężeniem zwrotnym są jedną z przyszłościowych gałęzi rozwoju robotyki. Pojawienie się kanału siłowego sprzężenia zwrotnego przyniosło jednak wiele nowych problemów. Znane filtry analogowe, dyskretne, adaptacyjne powodują przesunięcie filtrowanego sygnału w czasie. W ramach badań została opracowana metoda filtracji sygnałów w czasie rzeczywistym, która jest dedykowana do dyskretnych układów sterowania. Metoda jest oparta na lokalnej aproksymacji parametrów wielomianu z zastosowaniem metody poszukiwania pseudorozwiązań równań liniowych nadokreślonych - najefektywniejszej według metody najmniejszych kwadratów. Zaproponowany algorytm minimalizuje przesunięcie czasowe sygnału filtrowanego. Sposób działania metody został zweryfikowany podczas dwóch niezależnych eksperymentów na hydraulicznym stanowisku badawczym.
EN
Remotely controlled systems with force-feedback are one of the future development of the robotics. However, the use of a force-feedback communication channel have brought many new problems. Well-known analogue, discreet or adaptive filters are a cause of the delay between measured and filtered signal. During research, a low-delay filtration algorithm was developed which have been dedicated to work in a real-time control units. The algorithm has been based on the method of finding the solutions of overdetermined systems - most effective according to the least squares criterion. The algorithm minimizes the delay between the measured and filtered signal. The proposed method of filtration was validated on the hydraulic test stand during two independent experiments.
Rocznik
Strony
107--117
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
autor
  • Instytut Technologii Mechanicznej, Wydział Inżynierii Mechanicznej i Mechatroniki, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
autor
  • Instytut Technologii Mechanicznej, Wydział Inżynierii Mechanicznej i Mechatroniki, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
  • Instytut Technologii Mechanicznej, Wydział Inżynierii Mechanicznej i Mechatroniki, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Bibliografia
  • 1. Ali F., Jain R., Gupta D., Agarwal A.: Design and analysis of low pass elliptic filter. In: Second International Conference on Computational Intelligence & Communication Technology (CICT). Ghaziabad, India 2016. p. 449-451.
  • 2. Arcara P., Melchiorri C., Stramigioli S.: Intrinsically passive control in bilateral teleoperation mimo systems. In: Control Conference (ECC), 2001 European. Porto, Portugal 2001. p. 1180-1185.
  • 3. Atashzar S. F., Polushin I.G., Patel R.V.: Projection-based force reflection algorithms for teleoperated rehabilitation therapy. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan 2013. p. 477-482.
  • 4. Baranowski J., Piątek P., Bauer W., Dziwiński T., Zagorowska M.: Bi-fractional filters. Part 2: Right half-plane case. In: Methods and Models in Automation and Robotics (MMAR), 2014 19th International Conference Międzyzdroje, Poland 2014. IEEE. p. 369-373.
  • 5. Ben-Dov D., Salcudean S.E.: A force-controlled pneumatic actuator for use in teleoperation masters. In: Robotics and Automation. Proceedings.IEEE International Conference. Vol. 3. Atlanta, GA, USA 1993. p. 938-943.
  • 6. Chang Ming-Kun: An adaptive self-organizing fuzzy sliding mode controller for a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators. "Control Engineering Practice" 2010, Vol. 18, Iss. 1, p. 13-22.
  • 7. Evensen G.: The ensemble Kalman filter: theoretical formulation and practical implementation. "Ocean Dynamics" 2003, 53(4), p. 343-367.
  • 8. Ferrara E.: Fast implementations of LMS adaptive filters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1980, 28(4), p. 474-475.
  • 9. Ferrell W. R.: Remote manipulation with transmission delay. IEEE Transactions on Human Factors in Electronics, 1965. HFE-6(1), p. 24-32.
  • 10. Ferrell W. R., Sheridan T.B.: Supervisory control of remote manipulation. IEEE Spectrum, 1967, 4(10), p. 81-88.
  • 11. Ferrell W. R.: Delayed force feedback. Human Factors: The Journal of the Human Factors and Ergonomics Society, 1966, 8(5), p. 449-455.
  • 12. Filanovsky I. M.: Bessel-Butterworth transitional filters. In: IEEE International Symposium on Circuits and Systems (ISCAS). Melbourne VIC, Australia, 2014, p. 2105-2108.
  • 13. Hastrudi-Zaad K., Salcudean S. E..: On the use of local force feedback for transparent teleoperation. In: Robotics and Automation. Proceedings. IEEE International Conference, Vol.3. Detroit, USA 1999, p. 1863-1869.
  • 14. Hulin T., Albu-Schäffer A., Hirzinger G.: Passivity and stability boundaries for haptic systems with time delay. In: IEEE Transactions on Control Systems Technology, 2014, 22(4), p. 1297-1309.
  • 15. Hyun C., Park J. H., Kyunghwan K., Park J.: Sliding-mode-based impedance controller for bilateral teleoperation under varying time-delay. In: Proceedings 2001 ICRA. IEEE International Conference, Seoul, South Korea 2001, Vol 1, p. 1025-1030.
  • 16. Khadraoui S., Rakotondrabe M., Lutz P.: Interval Modeling and Robust Control of Piezoelectric Microactuators. In: Control Systems Technology, IEEE Transactions, 2012, 20(2), p. 486-494.
  • 17. Kim W. S.: Developments of new force reflecting control schemes and an application to a teleoperation training simulator. In: Robotics and Automation, IEEE International Conference, Nice, France 1992, Vol 2, p. 1412-1419.
  • 18. Kim W. S., Hannaford B., Fejczy A. K.: Force-reflection and shared compliant control in operating telemanipulators with time delay. "Robotics and Automation" IEEE Transactions 1992, 8(2), p. 176-185.
  • 19. Larson R., Keckler W.: Optimum adaptive control in an unknown environment. In: IEEE Transactions on Automatic Control, 1968, 13(4), p. 438-439.
  • 20. Lawrence D. A.: Stability and transparency in bilateral teleoperation. In: Robotics and Automation, IEEE Transactions 1993, 9(5), p. 624-637.
  • 21. Lichiardopol S., Van de Wouw N., Nijmeijer H.: Control scheme for human-robot co-manipulation of uncertain, time-varying loads. In: 2009 American Control Conference. St. Louis, MO, USA, 2009, p. 1485-1490.
  • 22. McClellan J., Parks T., Rabiner L.: A computer program for designing optimum FIR linear phase digital filters In: IEEE Transactions on Audio and Electroacoustics, 1973, 21(6), p. 506-526.
  • 23. Miądlicki K., Pajor M.: Overview of user interfaces used in load lifting devices. "International Journal of Scientific & Engineering Research" 2015, 6(9), p. 1215-1220.
  • 24. Miądlicki K., Pajor M.: Real-time gesture control of a CNC machine tool with the use Microsoft Kinect sensor. "International Journal of Scientific & Engineering Research" 2015, 6(9), p. 538-543.
  • 25. Moreau R., Pham M. T., Tavakoli M., Le M. Q., Redarce T.: Sliding-mode bilateral teleoperation control design for master–slave pneumatic servo systems. "Control Engineering Practice" 2012, 20(6), p. 584-597.
  • 26. Nguyen T., Leavitt J., Jabbari F., Bobrow J. E.: Accurate sliding-mode control of pneumatic systems using lowcost solenoid valves. In: Mechatronics, IEEE/ASME Transactions 2007, 12(2), p. 216-219.
  • 27. Niemeyer G., Slotine J.: Stable adaptive teleoperation. Oceanic Engineering. In: IEEE Journal of, 1991, 16(1), p. 152-162.
  • 28. Mirosław P., Miądlicki K., Saków M.: Kinect sensor implementation in fanuc robot manipulation. "Archives of Mechanical Technology and Automation" 2014, 34(3), p. 35-44.
  • 29. Piątek P., Baranowski J., Zagórowska M., Bauer W., Dziwiński T.: Bi-fractional filters, part 1: Left half-plane case. "Advances in Modelling and Control of Non-Integer-Order Systems" 2015, p. 81-90.
  • 30. Polushin I. G., Takhmar A., Patel R. V.: Projection-based force-reflection algorithms with frequency separation for bilateral teleoperation. In: Mechatronics, IEEE/ASME Transactions 2015, 20(1), p. 143-154.
  • 31. Psychalinos C., Tsirimokou G., Elwakil A. S.: Switched-capacitor fractional-step Butterworth filter design. "Circuits, Systems, and Signal Processing" 2016, 35(4), p. 1377-1393.
  • 32. Ra W. S., Whang I.: Recursive weighted robust least squares filter for frequency estimation. In: 2006 SICE-ICASE International Joint Conference. Busan, South Korea 2006, p. 774-778.
  • 33. Rakotondrabe M., Ivan I. A.: Development and force/position control of a new hybrid thermo-piezoelectric microgripper dedicated to micromanipulation tasks. In: Automation Science and Engineering, IEEE Transactions 2011, 8(4), p. 824-834.
  • 34. Rakotondrabe M., Ivan I. A., Khadraoui S., Clevy C., Lutz P., Chaillet N.: Dynamic displacement self-sensing and robust control of cantilever piezoelectric actuators dedicated for microassembly. In: Advanced Intelligent Mechatronics (AIM), 2010 IEEE/ASME International Conference on. Montreal, QC, Canada 2010, p. 557-562.
  • 35. Rakotondrabe M., Ivan I. A., Khadraoui S., Lutz P., Chaillet N.: Simultaneous displacement/force self-sensing in piezoelectric actuators and applications to robust control. In: Mechatronics, IEEE/ASME Transactions 2015, 20(2), p. 519-531.
  • 36. Saków M., Miądlicki K., Parus A.: Self-sensing teleoperation system based on 1-dof pneumatic manipulator. "Journal of Automation, Mobile Robotics and Intelligent Systems" 2017, 11(1), p. 64-76.
  • 37. Saków M., Pajor M., Parus A.: Estymacja siły oddziaływania środowiska na układ zdalnie sterowany ze sprzężeniem siłowym zwrotnym o kinematyce kończyny górnej. "Modelowanie Inżynierskie" 2016, nr 58,t. 27, s. 113-122.
  • 38. Saków M, Pajor M., Parus A.: Układ sterowania samowyznaczający siły oddziaływania środowiska na manipulator wykonawczy w czasie pracy systemu telemanipulacyjnego. "Projektowanie Mechatroniczne - Zagadnienia Wybrane" 2016, Vol. 1., s. 139-150.
  • 39. Saków, M., Parus, A.: Sensorless control scheme for teleoperation with force-feedback, based on a hydraulic servomechanism, theory and experiment. "Measurement Automation Monitoring" 2016, 62(12), p. 417-425.
  • 40. Saków M., Parus A., Miądlicki K.: Predykcyjna metoda wyznaczania siły w siłowym sprzężeniu zwrotnym w systemie zdalnie sterowanym. "Modelowanie Inżynierskie" 2017, nr 62, t. 31, s. 88-97.
  • 41. Saków M., Parus A., Pajor M., Miądlicki K.: Nonlinear inverse modeling with signal prediction in bilateral teleoperation with force-feedback. In: Methods and Models in Automation and Robotics (MMAR), 22nd International Conference,Międzyzdroje, 2017, p. 141-146.
  • 42. Sheridan T. B.: Space teleoperation through time delay: review and prognosis. "Robotics and Automation": IEEE Transactions 1993, 9(5), p. 592-606.
  • 43. Sheridan T. B., William R. F.: Human control of remote computer-manipulators. In: Proceedings of the 1st International Joint Conference on Artificial Intelligence. 1969, p. 483-494.
  • 44. Keith D., Majewski M.: Intelligent opinion mining and sentiment analysis using artificial neural networks. In: International Conference on Neural Information Processing. Istanbul, Turkey, 2015, p. 103-110.
  • 45. Keith D., Majewski, M.: Ana Botella Trelis. Intelligent semantic-based system for corpus analysis through hybrid probabilistic neural networks. In: International Symposium on Neural Networks, 2011, p. 83-92.
  • 46. Tadano K., Kawashima K.: Development of 4-DOFs forceps with force sensing using pneumatic servo system. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. Orlando, FL, USA, 2006, p. 2250-2255.
  • 47. Tavakoli M., Patel R. V., Moallem M.: A force reflective master-slave system for minimally invasive surgery. In: Intelligent Robots and Systems (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference. Las Vegas, NV, USA, 2003, Vol.3, p. 3077-3082.
  • 48. Tomovic R., Boni G.: An adaptive artificial hand. In: IRE Transactions on Automatic Control, 1962, 7(3), p. 3-10.
  • 49. Trefethen, Lloyd N, David Bau III.: Numerical linear algebra, 1997, Vol. 50.
  • 50. Tsirimokou G., Psychalinos C., Elwakil A. S.: Digitally programmed fractional-order Chebyshev filters realizations using current-mirrors. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2015, p. 2337-2340.
  • 51. Wei A., Khosla P. K., Riviere C. N.: Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. In: Mechatronics, IEEE/ASME Transactions 2007, 12(2), p. 134-142.
  • 52. Wen-Hong Z., Salcudean S. E.: Stability guaranteed teleoperation: an adaptive motion/force control approach. In: Automatic Control, IEEE Transactions 2000, 45(11), p. 1951-1969.
  • 53. Whitney D.: State space models of remote manipulation tasks. In: IEEE Transactions on Automatic Control, 1969, 14(6), p. 617-623.
  • 54. Zhai D. H., Xia Y.: Adaptive control for teleoperation system with varying time Delays and input saturation constraints. In: IEEE Transactions on Industrial Electronics, 2016, 63(11), p. 6921-6929.
  • 55. Zhai D. H., Xia Y.: Adaptive control of semi-autonomous teleoperation system with asymmetric time-varying delays and input uncertainties. In: IEEE Transactions on Cybernetics, 2016, PP(99), p. 1-13.
  • 56. Zho M., Ben-Tzvi P.: RML glove - an exoskeleton glove mechanism with haptics feedback. In: Mechatronics, IEEE/ASME Transactions 2015, 20(2), p. 641-652.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76fc3793-ecb2-4a0f-bf22-10d167355d22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.