PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Coupled Smoothed Finite Element-Boundary Element Method for Structural-Acoustic Analysis of Shell

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, the finite element method (FEM) – boundary element method (BEM) is used to predict the performance of structural-acoustic problem, i.e. the frequency response analysis, modal analysis. The accuracy of conventional FEM/BEM for structural-acoustic problems strongly depends on the size of the mesh, element quality, etc. As element size gets greater and distortion gets severer, the deviation of high frequency problem is also clear. In order to improve the accuracy of structural-acoustic problem, a smoothed finite-element/boundary-element coupling procedure (SFEM/BEM) is extended to analyze the structural-acoustic problem consisting of a shell structure interacting with the cavity in this paper, in which the SFEM and boundary element method (BEM) models are used to simulate the structure and the fluid, respectively. The governing equations of the structural-acoustic problems are established by coupling the SFEM for the structure and the BEM for the fluid. The solutions of SFEM are often found to be much more accurate than those of the FEM model. Based on its attractive features, it was decided in the present work to extend SFEM further for use in structural-acoustic analysis by coupling it with BEM, the present SFEM/BEM is implemented to predict the vehicle structure-acoustic frequency response analysis, and two numerical experiments results show that the present method can provide more accurate results compared with the standard FEM/BEM using the same mesh. It indicates that the present SFEM/BEM can be widely applied to solving many engineering noise, vibration and harshness (NVH) problems with more accurate solutions.
Rocznik
Strony
49--59
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Modern Engineering Training Center, Hunan University, Changsha, 410008, China
autor
  • College of Engineering and Technology, Southwest University, Chongqing, 400715, P.R. China
autor
  • College of Engineering and Technology, Southwest University, Chongqing, 400715, P.R. China
Bibliografia
  • 1. Bathe K. J., Dvorkin E. N. (1985), A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, International Journal for Numerical Methods in Engineering, 21, 367–383.
  • 2. Bathe K. J., Nitikitpaiboon C., Wang X. (1995), A mixed displacement-based finite element formulation for acoustic fluid-structure interaction, Computers & Structures, 56, 2–3, 225–237.
  • 3. Chen P. T., Ju S. H., Cha K. C. (2000), A symmetric formulation of coupled BEM/FEM in solving responses of submerged elastic structures for large degree of freedoms, Journal of Sound and Vibration, 233, 407–422.
  • 4. Choi P. (1997), Application of a directly coupled boundary element and finite element model to the dynamics of coupled acoustic silencers, PhD dissertation, North Carolina State University.
  • 5. Coyette J. P. (1999), The use of finite-element and boundary-element models for predicting the vibroacoustic behaviour of layered structures, Advances in Engineering Software, 30, 133–139.
  • 6. Davidsson P. (2004), Structure-acoustic analysis: finite element modeling and reduction methods, PhD dissertation, Lund University.
  • 7. Everstine G. C. (1981), A symmetric potential formulation for fluid–structure interaction, Journal of Sound and Vibration, 79, 1, 157–160.
  • 8. Everstine G. C. (1997), Finite element formulations of structural acoustics problems, Computers & Structures, 65, 3, 307–321.
  • 9. Everstine G. C., Henderson F. M. (1990), Coupled finite element/boundary element approach for fluid structure interaction, The Journal of the Acoustical Society of America, 87, 5, 1938–1945.
  • 10. Fredrik H. (2001), Structure-acoustic analysis using BEM/FEM: Implementation in MATLAB, Master Dissertation, Lund University.
  • 11. Hamdi M. A., Ousset Y., Verchery G. (1978), A displacement method for the analysis of vibrations of coupled fluid & structure systems, International Journal for Numerical Methods in Engineering, 13, 139–150.
  • 12. He Z. C., Li G. Y. et al. (2013), An improved eigen-frequencies prediction for three-dimensional problems using face-based smoothed finite element method (FS-FEM), Acta Mechanica Solida Sinica, 26, 2, 140–150.
  • 13. He Z. C., Liu G. R. et al. (2011), A coupled ES-FEM/BEM method for fluid-structure interaction problems, Engineering Analysis with Boundary Elements, 35, 140–147.
  • 14. Jeans R. A., Mathews I. C. (1990), Solution of fluid-structure interaction problems using a coupled finite element and variational boundary element technique, The Journal of the Acoustical Society of America, 88, 2459–2466.
  • 15. Jeans R. A., Mathews I. C. (1993), A unique coupled boundary element/finite element method for the elastoacoustic analysis of fliud-filled thin shell, The Journal of the Acoustical Society of America, 94, 3473–3479.
  • 16. Kopuz S. (1996), Integrated FEM/BEM approach to the dynamic and acoustic analysis of plate structures, Engineering Analysis with Boundary Elements, 17, 269–277.
  • 17. Li W., Chai Y. B. et al. (2014), Analysis of coupled structural-acoustic problems based on the smoothed finite element method (S-FEM), Engineering Analysis with Boundary Elements, 40, 84–91.
  • 18. Liu G. R., Dai K. Y., Nguyen T. T. (2007a), A smoothed finite element method for mechanics problems, Computational Mechanics, 39, 859–877.
  • 19. Liu G. R., Nguyen T. T., Dai K. Y., Lam K. Y. (2007b), Theoretical aspects of the smoothed finite element method (SFEM), International Journal for Numerical Methods in Engineering, 71, 902–930.
  • 20. Morand H., Ohayon R. (1979), Substructure variational analysis of the vibrations of coupled fluid structure systems- finite-element results, International Journal for Numerical Methods in Engineering, 14, 5, 741–755.
  • 21. Nehete D. V., Modak S. V., Gupta K. (2015), Structural FE model updating of cavity systems incorporating vibro-acoustic coupling, Mechanical Systems and Signal Processing, 50–51, 362–379.
  • 22. Tonga Z., Zhang Y., Zhang Z., Hua H. (2007), Dynamic behavior and sound transmission analysis of a fluid-structure coupled system using the direct-BEM/FEM, Journal of Sound and Vibration, 299, 645–655.
  • 23. Wang G., Cui X. Y., Liang Z. M., Li G. Y. (2015), A coupled smoothed finite element method (S-FEM) for structural-acoustic analysis of shells, Engineering Analysis with Boundary Elements, 61, 207–217.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76f81506-67a8-4840-a4b6-f264ed0c88fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.