PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of troposphere correction for designation of the ellipsoidal height of aircraft at approach to landing procedure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper reports on research into the effect of the troposphere correction on the accuracy of the vertical component determination of an aircraft's flight as it approaches landing at Deblin Airport. The article presents ellipsoidal height value of the aircraft when the troposphere correction is considered in navigational calculations and when it is not taken into account. Accuracy of the aircraft positioning in the vertical plane using the SPP method is determined. The study shows that application of the troposphere correction in navigational calculations increases the accuracy of the vertical component determination by 25%–32%. The article and the study may serve as a valuable source of information for pilots, flight instructors and aircraft crews during training in operation and implementation of GNSS in aviation.
Słowa kluczowe
Rocznik
Strony
233--237
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
  • Institute of Navigation, Military University of Aviation, ul. Dywizjonu 303 nr 35, 08-521 Dęblin, Poland
  • Institute of Navigation, Military University of Aviation, ul. Dywizjonu 303 nr 35, 08-521 Dęblin, Poland
Bibliografia
  • 1. Abdelfatah M. A, Mousa A.E., El-Fiky G. S. (2018), Assessment oftropospheric delay mapping function models in Egypt: Using PTD database model, NRIAG Journalof Astronomy and Geophysics, 7(1), 47–51.
  • 2. Auh S-C., Lee S-B. (2018), Analysis of the Effect of Tropospheric Delay on Orthometric Height Determination at High Mountain, KSCE Journal of Civil Engineering, 22, 4573.
  • 3. Boon F.J.G., de Jonge P.J., Tiberius C.C.J.M. (1997), Precise aircraft positioning by fast ambiguity resolution using improved troposphere modeling, Proceedings of the 10th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1997), Kansas City, MO, 1877–1884.
  • 4. Collins J.P. (1999), Assessment and Development of a Tropospheric Delay Model for Aircraft Users of the Global Positioning System, University of New Brunswick, Department of Geodesy and Geomatics Engineering, Technical Report no. 203.
  • 5. Ćwiklak J., Jafernik H. (2010), The monitoring system for aircraft and vehicles of public order services based on GNSS, Annual of Navigation, 16, 15–24.
  • 6. Guilbert A. (2016), Optimal GPS/GALILEO GBAS methodologies with an application to troposphere, PhD thesis, Institut National Polytechnique de Toulouse (INP Toulouse).
  • 7. Hofmann-Wellenhof B., Lichtenegger H., Wasle E. (2008), GNSS – Global Navigation Satellite Systems: GPS, GLONASS, Galileo and more, SpringerWienNewYork, Wien, Austria.
  • 8. International Civil Aviation Organization (2006), ICAO Standards and Recommended Practices (SARPS). Annex 10, Volume I (Radionavigation aids), Polish version available at website: http://www.ulc.gov.pl/pl/prawo/prawomi%C4%99dzynarodowe/206- konwencje, current on: 15.10.2018.
  • 9. Krasuski K., Jafernik H. (2017), Determination troposphere delay using GPS sensor in air transport, Autobusy: technika, eksploatacja, systemy transportowe, 18(6), 826–829 (in Polish).
  • 10. Krasuski K., Wierzbicki D. (2016), The impact of atmosphere delays in processing of aircraft’s coordinates determination, Journal of KONES, 23(2), 209–214. Kutsenko O., Ilnytska S., Konin V. (2018), Investigation of the the residual tropospheric error influence on the coordinate determination accuracy in a satellite landing system, Aviation, 22(4), 156–165.
  • 12. Lkan R. M., Ozulu İ. M., Ilci V. (2016), Precise Point Positioning (PPP) Technique versus Network-RTK GNSS, FIG Working Week 2016, Christchurch, New Zealand, 1–10.
  • 13. Neri P. (2011), Use of GNSS signals and their augmentations for Civil Aviation navigation during Approaches with Vertical Guidance and Precision Approaches, PhD thesis, Institut National Polytechnique de Toulouse (INP Toulouse).
  • 14. Parameswaran K., Saha K., Raju C.S. (2008), Development of a regional tropospheric delay model for GPS-based navigation with emphasis to the Indian Region, Radio Science, 43, RS4007
  • 15. Sanz Subirana J., Juan Zornoza J. M., Hernandez-Pajares M. (2013), GNSS Data Processing, Volume I: Fundamentals and Algorithms, Publisher: ESA Communications, ESTEC, Noordwijk, Netherlands.
  • 16. Savchuk S., Khoptar A. (2018), Estimation of Slant Tropospheric Delays from GNSS Observations with Using Precise Point Positioning Method, Annual of Navigation, 25, 253–266.
  • 17. Schaer S. (1999), Mapping and predicting the Earth’s ionosphere using Global Positioning System, PhD thesis, Neunundfunfzigster Band volume 59, Zurych.
  • 18. Sultana Q., Sarma A.D., Javeed M.Q. (2013), Estimation of tropospheric time delay for Indian LAAS, 2013 International Conference on Emerging Trends in VLSI, Embedded System, Nano Electronics and Telecommunication System (ICEVENT), Tiruvannamalai, 1–5.
  • 19. Takasu T. (2013), RTKLIB ver. 2.4.3 Manual, RTKLIB: An Open Source Program Package for GNSS Positioning, Paper available at website: http://www.rtklib.com/prog/manual_2.4.2.pdf, current on 2019.
  • 20. Uemo M., Hoshinoo K., Matsunaga K., Kawai M., Nakao H., Langley R., Bisnath S. (2001), Assessment of atmospheric delay correction models for the Japanese MSAS; Proceedings of the ION GPS 2001; Salt Lake, UT, USA.
  • 21. Vyas M. R., Lim S., Rizos C. (2011), Analysis of Zenith Path Delay in dynamically changing environment, International Global Navigation Satellite Systems Society IGNSS Symposium 2011, University of New South Wales, Sydney, NSW, Australia, 1–8.
  • 22. Wang Z., Xin P., Li R., Wang S. (2017), A Method to Reduce NonNominal Troposphere Error, Sensors, 17, 1751.
Uwagi
This paper was supported by Military University of Aviation for 2019 year.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76f3caae-1a49-45e2-bfe0-7d46edcf9414
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.