Identyfikatory
Warianty tytułu
Modelowanie niezawodnościowe dwuwymiarowych danych dotyczących okresu eksploatacji z wykorzystaniem dwuwymiarowego rozkładu Weibulla z badań nad wywrotkami kopalnianymi
Języki publikacji
Abstrakty
An engineering system can exhibit two- or multi-dimensions in its lifetime. As the classical univariate distribution cannot model this multi-dimensional characteristic, it is necessary to extend it to multivariate distribution in order to capture the multi-dimensional characteristics. This paper proposes a bivariate Weibull distribution that combines two classical Weibull models by a common exponent. The common exponent can represent the correlation between the two dimensions. A ratio likelihood test is proposed to test the significance of the correlation between the two dimensions. To solve the parameter estimation problem, this paper suggests a Bayesian method. Moreover, a goodness of fit test method is developed to visually check the fitness of the model. A case study considering mining trucks is presented to apply the bivariate Weibull distribution to model the two-dimensional life data.
Systemy inżynieryjne można charakteryzować za pomocą dwóch lub więcej wymiarów dotyczących okresu ich eksploatacji (np. przebieg i czas pracy pojazdu). Ponieważ klasyczny rozkład jednowymiarowy nie wystarcza do zamodelowania tej wielowymiarowej charakterystyki, konieczne jest wykorzystanie rozkładu wielowymiarowego, który pozwala uchwycić wielowymiarowość cyklu życia systemu. W artykule zaproponowano dwuwymiarowy rozkład Weibulla, który łączy w sobie dwa klasyczne modele Weibulla za pomocą wspólnego wykładnika. Wspólny wykładnik może reprezentować korelację między dwoma wymiarami. Zaproponowano test ilorazu wiarygodności, który umożliwia badanie istotności korelacji pomiędzy dwoma wymiarami. Do rozwiązania problemu estymacji parametrów zastosowano metodę bayesowską. Ponadto opracowano metodę badania dopasowania modelu do danych empirycznych służącą do wizualizacji dopasowania modelu. Przedstawiono studium przypadku dotyczące wywrotek kopalnianych, w którym dwuwymiarowy rozkład Weibulla zastosowano do modelowania dwuwymiarowych danych dotyczących okresu eksploatacji tych pojazdów.
Czasopismo
Rocznik
Tom
Strony
650--659
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Reliadepartment of Engineering and Safety University of Tromsø n-9037 Tromsø, norway
autor
- Reliadepartment of Engineering and Safety University of Tromsø n-9037 Tromsø, norway
autor
- Reliadepartment of Engineering and Safety University of Tromsø n-9037 Tromsø, norway
Bibliografia
- 1. Ahmed A M, Ibrahim N A. Bayesian Estimator for Weibull Distribution with Censored Data using Extension of Jeffrey Prior Information. Procd Soc Behv 2010; 8: 663-669, https://doi.org/10.1016/j.sbspro.2010.12.092.
- 2. Are N. LCC for Switches and Crossings at the Swedish Railway – A case study. International Journal of Condition Monitoring and Diagnostic Engineering Management 2009; 12: 10-19.
- 3. Barker K, Baroud H. Proportional hazards models of infrastructure system recovery. Reliab Eng Syst Safe 2014; 124: 201-206, https://doi. org/10.1016/j.ress.2013.12.004.
- 4. Barlow R E, Proschan F, Hunter L C. Mathematical theory of reliability. Philadelphia: SIAM, 1996, https://doi. org/10.1137/1.9781611971194.
- 5. Berger J O, Sun D C. Bayesian-Analysis for the Poly-Weibull Distribution. J Am Stat Assoc 1993; 88: 1412-1418, https://doi. org/10.1080/01621459.1993.10476426.
- 6. D.Hanagal D. A multivariate Weibull distribution. Economic Quality Control 1996; 11: 193-200.
- 7. Drury M R, Walker E V, Wightman DW, Bendell A. Proportional Hazards Modeling in the Analysis of Computer-Systems Reliability. Reliab Eng Syst Safe 1988; 21: 197-214, https://doi.org/10.1016/0951-8320(88)90121-4.
- 8. Genest C, Rivest L P. Statistical-Inference Procedures for Bivariate Archimedean Copulas. J Am Stat Assoc 1993; 88: 1034-1043, https://doi. org/10.1080/01621459.1993.10476372.
- 9. Hanagal D A. Bivariate Weibull regression model based on censored samples. Stat Pap 2006; 47: 137-147, https://doi.org/10.1007/s00362005-0277-4.
- 10. Hougaard P. A Class of Multivariate Failure Time Distributions. Biometrika 1986; 73: 671-678, https://doi.org/10.2307/2336531.
- 11. Hougaard P. Modeling Multivariate Survival. Scand J Stat 1987; 14: 291-304.
- 12. Jack N, Iskandar B P, Murthy D N P. A repair-replace strategy based on usage rate for items sold with a two-dimensional warranty. Reliab Eng Syst Safe 2009; 94: 611-617, https://doi.org/10.1016/j.ress.2008.06.019.
- 13. Kim Y, Park J, Jung W, Jang I, Seong P H. A statistical approach to estimating effects of performance shaping factors on human error probabilities of soft controls. Reliab Eng Syst Safe 2015; 142: 378-387, https://doi.org/10.1016/j.ress.2015.06.004.
- 14. Kumar D, Klefsjo B. Proportional Hazards Model - a Review. Reliab Eng Syst Safe 1994; 44: 177-188, https://doi.org/10.1016/09518320(94)90010-8.
- 15. Kumar D, Westberg U. Proportional hazards modeling of time-dependent covariates using linear regression: A case study. IEEE T Reliab 1996; 45: 386-392, https://doi.org/10.1109/24.536990.
- 16. Kundu D, Gupta A K. Bayes estimation for the Marshall-Olkin bivariate Weibull distribution. Comput Stat Data An 2013; 57: 271-281, https://doi.org/10.1016/j.csda.2012.06.002.
- 17. Lee L. Multivariate Distributions Having Weibull Properties. J Multivariate Anal 1979; 9: 267-277, https://doi.org/10.1016/0047259X(79)90084-8.
- 18. Leira B J. A comparison of some multivariate weibull distributions. Proceedings of the ASME 2010 29th Internatinal conference on Ocean, offshore and arctic Engineering, 2010, Shanghai, China, https://doi.org/10.1115/OMAE2010-20678.
- 19. Lu J-C. Bayes Paramter Estimation for the Bivariate Weibull Model of Marshall-Olkin for censored data. Ieee T Reliab 1992; 41: 608-615, https://doi.org/10.1109/24.249597.
- 20. Lu J C, Bhattacharyya G K. Some New Constructions of Bivariate Weibull Models. Ann I Stat Math 1990; 42: 543-559, https://doi. org/10.1007/BF00049307.
- 21. Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D. The BUGS book : a practical introduction to Bayesian analysis. London: CRC Press, 2013.
- 22. Lynch S M. Introduction to applied Bayesian statistics and estimation for social scientists. New York: Springer, 2007, https://doi. org/10.1007/978-0-387-71265-9.
- 23. Marshall A W, Olkin I. A Multivariate Exponential Distribution. J Am Stat Assoc 1967; 62: 30-44, https://doi. org/10.1080/01621459.1967.10482885.
- 24. Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. New York: Wiley,1998.
- 25. Mostafa B, Celeux G. Bayesian estimation of a Weibull distribution in a highly censored and small sample setting. Institut National De Recherche En Informatque Et Automatique. 1996.
- 26. Murthy D N P, Xie M, Jiang R. Weibull models. J. New Jersey: Wiley, 2004.
- 27. Nelsen RB. Copulas and quasi-copulas: An introduction to their properties and applications. Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms 2005; 391-413.
- 28. Hryniewicz O, Kaczmarek K, Nowak P. Bayes statistical decisions with random fuzzy data – an application for the Weibull distribution. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17 (4): 610–616, http://dx.doi.org/10.17531/ein.2015.4.18.
- 29. Posada D, Buckley T R. Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 2004; 53: 793-808, https://doi.org/10.1080/10635150490522304.
- 30. Roy D. Classification of Life Distributions in Multivariate Models. IEEE T Reliab 1994; 43: 445-445, https://doi.org/10.1109/24.294995.
- 31. Roy D, Mukherjee S P. Multivariate extensions of univariate life distributions. J Multivariate Anal 1998; 67: 72-79, https://doi.org/10.1006/ jmva.1998.1754.
- 32. Ryu K. An extension of Marshall and Olkin multivariate exponential distribution. Journal of American Statistical Association 1993; 88: 1458–1465, https://doi.org/10.1080/01621459.1993.10476434.
- 33. Sarhan A M, Hamilton D C, Smith B. Statistical analysis of competing risks models. Reliab Eng Syst Safe 2010; 95: 953-962, https://doi. org/10.1016/j.ress.2010.04.006.
- 34. Wen M-J, Lee C K. A. Multivariate Weibull Distribution. Pakistan Journal of Statistical operation research 2009; 5: 55-66.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76f2dc49-9fe9-463b-b105-c5aae85732ec