PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the main components of landscape evolution modelling of river systems

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, the use of numerical models for reproducing the evolution of river systems and landscapes is part of the day-by-day research activities of fuvial engineers and geomorphologists. However, despite landscape evolution modelling is based on a rather long tradition, and scientists and practitioners are studying how to schematize the processes involved in the evolution of a landscape since decades, there is still the need for improving the knowledge of the physical mechanisms and their numerical coding. Updating past review papers, the present work focuses on the frst aspect, discussing six main components of a landscape evolution model, namely continuity of mass, hillslope processes, water fow, erosion and sediment transport, soil properties, vegetation dynamics. The more common schematizations are discussed in a plain language, pointing out the current knowledge and possible open questions to be addressed in the future, towards an improvement of the reliability of such kind of models in describing the evolution of fuvial landscapes and river networks.
Czasopismo
Rocznik
Strony
459--475
Opis fizyczny
Bibliogr. 184 poz.
Twórcy
  • Department of Hydrology and Hydrodynamics, Institute of Geophysics, Polish Academy of Science, Ksiecia Janusza 64, 01-452 Warsaw, Poland
Bibliografia
  • 1. Adams JM, Gasparini NM, Hobley DE, Tucker GE, Hutton E, Nudurupati SS, Istanbulluoglu E (2017) The Landlab v1. 0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds. Geosci Model Dev. https://doi.org/10.5194/gmd-10-1645-2017
  • 2. Ahnert F (1976) Brief description of a comprehensive three dimensional model of landform development. Z fur Geomorphol Suppl Band 25:29–49
  • 3. Ahnert F (1987) Approaches to dynamic equilibrium in theoretical simulations of slope development. Earth Surf Proc Land 12(1):3–15. https://doi.org/10.1002/esp.3290120103
  • 4. Amundson R, Heimsath A, Owen J, Yoo K, Dietrich WE (2015) Hillslope soils and vegetation. Geomorphology 234:122–132. https://doi.org/10.1016/j.geomorph.2014.12.031
  • 5. Anders AM, Roe GH, Montgomery DR, Hallet B (2008) Influence of precipitation phase on the form of mountain ranges. Geology 36(6):479–482. https://doi.org/10.1130/G24821A.1
  • 6. Anderson RS (1998) Near-surface thermal profiles in alpine bedrock: implications for the frost weathering of rock. Arct Alp Res 30(4):362–372
  • 7. Anderson RS (2002) Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range Wyoming. Geomorphology 46(1–2):35–58. https://doi.org/10.1016/S0169-555X(02)00053-3
  • 8. Anderson SP, Bales RC, Duffy CJ (2008) Critical zone observatories: building a network to advance interdisciplinary study of Earth surface processes. Mineral Mag 72(1):7–10. https://doi.org/10.1180/minmag.2008.072.1.7
  • 9. Armitage JJ, Whittaker AC, Zakari M, Campforts B (2018) Numerical modelling of landscape and sediment flux response to precipitation rate change. Earth Surf Dyn 6(1):77–99. https://doi.org/10.5194/esurf-6-77-2018
  • 10. Arrowsmith JR, Rhodes DD (1994) Original forms and initial modifications of the Galway Lake Road scarp formed along the Emerson fault during the 28 June 1992 Landers, California, earthquake. Bull Seismol Soc Am 84(3):511–527
  • 11. Attal M, Lave J (2006) Changes of bedload characteristics along the Marsyandi River (central Nepal): implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active orogenic belts. In: Willett SD, Hovius N, Brandon MT, Fisher D (eds) Tectonics, climate, and landscape evolution, vol 398. Geological Society of America, Boulder, pp 143–171
  • 12. Attal M, Tucker GE, Whittaker AC, Cowie PA, Roberts GP (2008) Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment. J Geophys Res Earth Surf 113(F3):F03013. https://doi.org/10.1029/2007JF000893
  • 13. Avouac JP (1993) Analysis of scarp profiles: evaluation of errors in morphologic dating. J Geophys Res Solid Earth 98(B4):6745–6754. https://doi.org/10.1029/92JB01962
  • 14. Baas AC (2017) Models in geomorphology. Int Encycl Geogr People the Earth Environ Technol People Earth Environ Technol. https://doi.org/10.1002/9781118786352.wbieg0882
  • 15. Bagnold RA (1966) An approach to the sediment transport problem from general physics. United States Geological Survey Professional Paper, 422I. US Government Printing Office, Washington DC, USA
  • 16. Beaumont C, Kooi H, Willett S (2000) Coupled tectonic-surface process models with applications to rifted margins and collisional orogens. In: Summerfield MA (ed) Geomorphology and global tectonics. Wiley, Hoboken, pp 29–55
  • 17. Behrens T, Scholten T (2006) Digital soil mapping in Germany-a review. J Plant Nutr Soil Sci 169(3):434–443. https://doi.org/10.1002/jpln.200521962
  • 18. Bishop P (2007) Long-term landscape evolution: linking tectonics and surface processes. Earth Surf Proc Land 32(3):329–365. https://doi.org/10.1002/esp.1493
  • 19. Black TA, Montgomery DR (1991) Sediment transport by burrowing mammals, Marin County California. Earth Surf Process Landf 16(2):163–172. https://doi.org/10.1002/esp.3290160207
  • 20. Bookhagen B, Burbank DW (2006) Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys Res Lett 33(8):L08405. https://doi.org/10.1029/2006GL026037
  • 21. Bracken LJ, Turnbull L, Wainwright J, Bogaart P (2015) Sediment connectivity: a framework for understanding sediment transfer at multiple scales. Earth Surf Proc Land 40(2):177–188. https://doi.org/10.1002/esp.3635
  • 22. Braun J (2018) A review of numerical modeling studies of passive margin escarpments leading to a new analytical expression for the rate of escarpment migration velocity. Gondwana Res 53:209–224. https://doi.org/10.1016/j.gr.2017.04.012
  • 23. Braun J, Heimsath AM, Chappell J (2001) Sediment transport mechanisms on soil-mantled hillslopes. Geology 29(8):683–686. https://doi.org/10.1130/0091-7613(2001)029%3c0683:STMOSM%3e2.0.CO,2
  • 24. Bryan RB (2000) Soil erodibility and processes of water erosion on hillslope. Geomorphology 32(3–4):385–415. https://doi.org/10.1016/S0169-555X(99)00105-1
  • 25. Butler LG, Kielland K, Scott RT, Hanley TA (2007) Interactive controls of herbivory and fluvial dynamics on landscape vegetation patterns on the Tanana River floodplain, interior Alaska. J Biogeogr 34(9):1622–1631. https://doi.org/10.1111/j.1365-2699.2007.01713.x
  • 26. Carson MA, Kirkby MJ (1972) Hillslope form and process. Cambridge University Press, Cambridge
  • 27. Casadei M, Dietrich WE, Miller NL (2003) Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surf Proc Land 28(9):925–950. https://doi.org/10.1002/esp.470
  • 28. Caviedes-Voullième D, García-Navarro P, Murillo J (2012) Influence of mesh structure on 2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff events. J Hydrol 448:39–59. https://doi.org/10.1016/j.jhydrol.2012.04.006
  • 29. Caviedes-Voullième D, Fernández-Pato J, Hinz C (2018) Cellular automata and finite volume solvers converge for 2D shallow flow modelling for hydrological modelling. J Hydrol 563:411–417. https://doi.org/10.1016/j.jhydrol.2018.06.021
  • 30. Chen A, Darbon J, Morel JM (2014) Landscape evolution models: a review of their fundamental equations. Geomorphology 219:68–86. https://doi.org/10.1016/j.geomorph.2014.04.037
  • 31. Chorley RJ (1969) The drainage basin as the fundamental geomorphic unit. In: Chorley RJ (ed) Water, earth and man. Methuen & Co. Ltd., London, pp 77–98
  • 32. Cohen S, Willgoose G, Hancock G (2009) The mARM spatially distributed soil evolution model: A computationally efficient modeling framework and analysis of hillslope soil surface organization. J Geophys Res Earth Surf 114(F3):F03001. https://doi.org/10.1029/2008JF001214
  • 33. Collins DBG, Bras RL, Tucker GE (2004) Modeling the effects of vegetation-erosion coupling on landscape evolution. J Geophys Res Earth Surf 109(F3):F03004. https://doi.org/10.1029/2003JF000028
  • 34. Corenblit D, Steiger J (2009) Vegetation as a major conductor of geomorphic changes on the Earth surface: toward evolutionary geomorphology. Earth Surf Proc Land 34(6):891–896. https://doi.org/10.1002/esp.1788
  • 35. Costabile P, Costanzo C, Macchione F (2017) Performances and limitations of the diffusive approximation of the 2-d shallow water equations for flood simulation in urban and rural areas. Appl Numer Math 116:141–156. https://doi.org/10.1016/j.apnum.2016.07.003
  • 36. Coulthard TJ (2001) Landscape evolution models: a software review. Hydrol Process 15(1):165–173. https://doi.org/10.1002/hyp.426
  • 37. Coulthard TJ, Macklin MG (2001) How sensitive are river systems to climate and land-use changes? A model-based evaluation. J Quat Sci 16(4):347–351. https://doi.org/10.1002/jqs.604
  • 38. Coulthard TJ, Van De Wiel MJ (2006) A cellular model of river meandering. Earth Surf Process Landf 31(1):123–132. https://doi.org/10.1002/esp.1315
  • 39. Coulthard TJ, Macklin MG, Kirkby MJ (2002) A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surf Proc Land 27(3):269–288. https://doi.org/10.1002/esp.318
  • 40. Davy P, Croissant T, Lague D (2017) A precipiton method to calculate river hydrodynamics, with applications to flood prediction, landscape evolution models, and braiding instabilities. J Geophys Res Earth Surf 122(8):1491–1512. https://doi.org/10.1002/2016JF004156
  • 41. Di Silvio G, Nones M (2014) Morphodynamic reaction of a schematic river to sediment input changes: analytical approaches. Geomorphology 215:74–82. https://doi.org/10.1016/j.geomorph.2013.05.021
  • 42. Dietrich WE, Bellugi DG, Sklar LS, Stock D, Heimsath AM, Roering JJ (2003) Geomorphic transport laws for predicting landscape form and dynamics. In: Wilcock P, Iverson R (eds) Prediction in geomorphology. American Geophysical Union Monograph, Washington, pp 103–132. https://doi.org/10.1029/135GM09
  • 43. Dochez S, Laouafa F, Franck C, Guedon S, Martineau F, d’Amato J, Saintenoy A (2014) Multi-scale analysis of water alteration on the rockslope stability framework. Acta Geophys 62(5):1025–1048. https://doi.org/10.2478/s11600-014-0232-7
  • 44. Ebel BA, Loague K, Dietrich WE, Montgomery DR, Torres R, Anderson SP, Giambelluca TW (2007) Near-surface hydrologic response for a steep, unchanneled catchment near Coos Bay, Oregon: 1 Sprinkling experiments. Am J Sci 307(4):678–708. https://doi.org/10.2475/04.2007.02
  • 45. Einstein HA (1950) The bed-load function for sediment transport in open channel flow. Technical Bulletin, 1026, US Department of Agriculture, USA
  • 46. Evans KG (2000) Methods for assessing mine site rehabilitation design for erosion impact. Aust J Soil Res 38(2):231–248. https://doi.org/10.1071/SR99036
  • 47. Fagherazzi S, Kirwan ML, Mudd SM, Guntenspergen GR, Temmerman S, D'Alpaos A, Koppel J, Rybczyk JM, Reyes E, Craft C, Clough J (2012) Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev Geophys 50(1):RG1002. https://doi.org/10.1029/2011RG000359
  • 48. Ferdowsi B, Ortiz CP, Jerolmack DJ (2018) Glassy dynamics of landscape evolution. Proc Natl Acad Sci 115(19):4827–4832. https://doi.org/10.1073/pnas.1715250115
  • 49. Fernandes NF, Dietrich WE (1997) Hillslope evolution by diffusive processes: the timescale for equilibrium adjustments. Water Resour Res 33(6):1307–1318. https://doi.org/10.1029/97WR00534
  • 50. Finnegan NJ, Sklar LS, Fuller TK (2007) Interplay of sediment supply, river incision, and channel morphology revealed by the transient evolution of an experimental bedrock channel. J Geophys Res Earth Surf 112(F3):F03S11. https://doi.org/10.1029/2006JF000569
  • 51. Flanagan DC, Frankenberger JR, Ascough JC II (2012) WEPP: model use, calibration, and validation. Trans ASABE 55(4):1463–1477. https://doi.org/10.13031/2013.42254
  • 52. Fletcher RC, Buss HL, Brantley SL (2006) A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation. Earth Planet Sci Lett 244(1–2):444–457. https://doi.org/10.1016/j.epsl.2006.01.055
  • 53. Forte AM, Yanites BJ, Whipple KX (2016) Complexities of landscape evolution during incision through layered stratigraphy with contrasts in rock strength. Earth Surf Proc Land 41(12):1736–1757. https://doi.org/10.1002/esp.3947
  • 54. Franzoia M, Nones M (2017) Morphological reactions of schematic alluvial rivers: long simulations with a 0-D model. Int J Sediment Res 32(3):295–304. https://doi.org/10.1016/j.ijsrc.2017.04.002
  • 55. Fritsch E, Balan E, Do Nascimento NR, Allard T, Bardy M, Bueno G, Derenne S, Melfi AJ, Calas G (2011) Deciphering the weathering processes using environmental mineralogy and geochemistry: towards an integrated model of laterite and podzol genesis in the Upper Amazon Basin. CR Geosci 343(2–3):188–198. https://doi.org/10.1016/j.crte.2010.11.002
  • 56. Garcia-Navarro P (2016) Advances in numerical modelling of hydrodynamics workshop, University of Sheffield, UK, March 24–25, 2015. Appl Math Model 17(40):7423. https://doi.org/10.1016/j.apm.2016.06.045
  • 57. Gasparini NM, Tucker GE, Bras RL (2004) Network-scale dynamics of grain-size sorting: implications for downstream fining, stream-profile concavity, and drainage basin morphology. Earth Surf Proc Land 29(4):401–421. https://doi.org/10.1002/esp.1031
  • 58. Gesch B, Muller J, Farr TG (2006) The shuttle radar topography mission-Data validation and applications. Photogramm Eng Remote Sens 72(3):233–235
  • 59. Gilbert GK (1877) Report on the geology of the Henry Mountains. US Geographical and Geological Survey of the Rocky Mountain Region, Washington, DC
  • 60. Hajigholizadeh M, Melesse A, Fuentes H (2018) Erosion and sediment transport modelling in shallow waters: a review on approaches, models and applications. Int J Environ Res Public Health 15(3):518. https://doi.org/10.3390/ijerph15030518
  • 61. Hancock GR (2006) The impact of different gridding methods on catchment geomorphology and soil erosion over long timescales using a landscape evolution model. Earth Surf Proc Land 31(8):1035–1050. https://doi.org/10.1002/esp.1306
  • 62. Hancock G, Willgoose G (2001) Use of a landscape simulator in the validation of the SIBERIA catchment evolution model: declining equilibrium landforms. Water Resour Res 37(7):1981–1992. https://doi.org/10.1029/2001WR900002
  • 63. Hancock GR, Willgoose GR (2018) Sustainable mine rehabilitation—25 years of the SIBERIA landform evolution and long-term erosion model. In: From start to finish: a life-of-mine perspective. Australian Institute of Mining and Metallurgy, Carlton
  • 64. Hancock GR, Evans KG, Willgoose GR, Moliere DR, Saynor MJ, Loch RJ (2000) Medium-term erosion simulation of an abandoned mine site using the SIBERIA landscape evolution model. Aust J Soil Res 38(2):249–264. https://doi.org/10.1071/SR99035
  • 65. Hancock GR, Loughran RJ, Evans KG, Balog RM (2008) Estimation of soil erosion using field and modelling approaches in an undisturbed Arnhem Land catchment, Northern Territory Australia. Geogr Res 46(3):333–349. https://doi.org/10.1111/j.1745-5871.2008.00527.x
  • 66. Hancock GR, Lowry JBC, Coulthard TJ (2015) Catchment reconstruction-erosional stability at millennial time scales using landscape evolution models. Geomorphology 231:15–27. https://doi.org/10.1016/j.geomorph.2014.10.034
  • 67. Hancock GR, Verdon-Kidd D, Lowry JBC (2017) Soil erosion predictions from a landscape evolution model–An assessment of a post-mining landform using spatial climate change analogues. Sci Total Environ 601:109–121. https://doi.org/10.1016/j.scitotenv.2017.04.038
  • 68. Hasbargen LE, Paola C (2000) Landscape instability in an experimental drainage basin. Geology 28(12):1067–1070. https://doi.org/10.1130/0091-7613(2000)28%3c1067:LIIAED%3e2.0.CO,2
  • 69. Heimsath AM, Ehlers TA (2005) Quantifying rates and timescales of geomorphic processes. Earth Surf Proc Land 30(8):917–921. https://doi.org/10.1002/esp.1253
  • 70. Heimsath AM, Dietrich WE, Nishiizumi K, Finkel RC (2001) Stochastic processes of soil production and transport: Erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range. Earth Surf Proc Land 26(5):531–552. https://doi.org/10.1002/esp.209
  • 71. Hobley DE, Adams JM, Nudurupati SS, Hutton EW, Gasparini NM, Istanbulluoglu E, Tucker GE (2017) Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics. Earth Surf Dyn 5(1):21–46. https://doi.org/10.5194/esurf-5-21-2017
  • 72. Hoosbeek MR, Bryant RB (1992) Towards the quantitative modeling of pedogenesis—a review. Geoderma 55(3–4):183–210. https://doi.org/10.1016/0016-7061(92)90083-J
  • 73. Howard AD (1994) A detachment-limited model of drainage basin evolution. Water Resour Res 30(7):2261–2285. https://doi.org/10.1029/94WR00757
  • 74. Howard AD (1998) Long profile development of bedrock channels, interaction of weathering, mass wasting, bed erosion, and sediment transport. In: Tinkler KJ, Wohl E (eds) Rivers over rock, fluvial processes in bedrock channels. American Geophysical Union, Washington DC, pp 297–319
  • 75. Howard AD, Kerby G (1983) Channel changes in badlands. Geol Soc Am Bull 94(6):739–752. https://doi.org/10.1130/0016-7606(1983)94%3c739:CCIB%3e2.0.CO,2
  • 76. Howard AD, Dietrich WE, Seidl MA (1994) Modeling fluvial erosion on regional to continental scales. J Geophys Res Solid Earth 99(B7):13971–13986. https://doi.org/10.1029/94JB00744
  • 77. Huang X, Niemann JD (2006) An evaluation of the geomorphically effective event for fluvial processes over long periods. J Geophys Res Earth Surf. https://doi.org/10.1029/2006JF000477
  • 78. Ijjász-Vásquez EJ, Bras RL, Moglen GE (1992) Sensitivity of a basin evolution model to the nature of runoff production and to initial conditions. Water Resour Res 28(10):2733–2741. https://doi.org/10.1029/92WR01561
  • 79. Istanbulluoglu E, Bras RL (2005) Vegetation-modulated landscape evolution: effects of vegetation on landscape processes, drainage density, and topography. J Geophys Res Earth Surf 110(F2):F02012. https://doi.org/10.1029/2004JF000249
  • 80. Izumi N, Parker G (2000) Linear stability analysis of channel inception: downstream-driven theory. J Fluid Mech 419:239–262. https://doi.org/10.1017/S0022112000001427
  • 81. Kamp U, Owen LA (2013) Polygenetic landscapes. In: Treatise on geomorphology, vol 5. Elsevier, pp 370–393
  • 82. Karydas CG, Panagos P, Gitas IZ (2014) A classification of water erosion models according to their geospatial characteristics. Int J Digital Earth 7(3):229–250. https://doi.org/10.1080/17538947.2012.671380
  • 83. Khosronejad A, Kozarek JL, Sotiropoulos F (2014) Simulation-based approach for stream restoration structure design: model development and validation. J Hydraul Eng 140:04014042. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000904
  • 84. Kirkby MJ (1971) Hillslope process-response models based on the continuity equation. Inst Br Geogr Spec Publ 3:15–30
  • 85. Kirkby MJ (1976) Deterministic continuous slope models. Z für Geomorphol Suppl Band 25:1–19
  • 86. Kirkby MJ (1985) A model for the evolution of regolith-mantled slopes. In: Models in geomorphology, Allen and Unwin, Boston, pp 213–237
  • 87. Kirkby MJ (1987) Modelling some influences of soil erosion, landslides and valley gradient on drainage density and hollow development. Catena Suppl 10:1–14
  • 88. Kirkby MJ (1992) An erosion-limited hillslope evolution model. Catena Suppl 23:157–187
  • 89. Kirkby MJ (1994) Thresholds and instability in stream head hollows, a model of magnitude and frequency for wash processes. In: Kirkby MJ (ed) Process models and theoretical geomorphology. Wiley, New York, pp 295–314
  • 90. Kirkby MJ (1996) A role for theoretical models in geomorphology? In: The scientific nature of geomorphology, vol 27. Wiley, Hoboken, pp 257–272
  • 91. Kooi H, Beaumont C (1994) Escarpment evolution on high-elevation rifted margins: Insights derived from a surface processes model that combines diffusion, advection, and reaction. J Geophys Res Solid Earth 99(B6):12191–12209. https://doi.org/10.1029/94JB00047
  • 92. Lague D (2014) The stream power river incision model: evidence, theory and beyond. Earth Surf Proc Land 39(1):38–61. https://doi.org/10.1002/esp.3462
  • 93. Lague D, Hovius N, Davy P (2005) Discharge, discharge variability, and the bedrock channel profile. J Geophys Res Earth Surf 110(F4):F04006. https://doi.org/10.1029/2004JF000259
  • 94. Langston AL, Tucker GE (2018) Developing and exploring a theory for the lateral erosion of bedrock channels for use in landscape evolution models. Earth Surf Dyn 6:1–27. https://doi.org/10.5194/esurf-6-1-2018
  • 95. Larsen LG, Eppinga MB, Passalacqua P, Getz WM, Rose KA, Liang M (2016) Appropriate complexity landscape modeling. Earth Sci Rev 160:111–130. https://doi.org/10.1016/j.earscirev.2016.06.016
  • 96. Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. Freeman, W.H. and Co., San Francisco
  • 97. Liang M, Van Dyk C, Passalacqua P (2016) Quantifying the patterns and dynamics of river deltas under conditions of steady forcing and relative sea level rise. J Geophys Res Earth Surf 121(2):465–496. https://doi.org/10.1002/2015JF003653
  • 98. Lin H (2011) Three principles of soil change and pedogenesis in time and space. Soil Sci Soc Am J 75(6):2049–2070. https://doi.org/10.2136/sssaj2011.0130
  • 99. Lindim C, Van Gils J, Cousins IT (2016) A large-scale model for simulating the fate & transport of organic contaminants in river basins. Chemosphere 144:803–810. https://doi.org/10.1016/j.chemosphere.2015.09.051
  • 100. Liston GE, Elder K (2006) A distributed snow-evolution modeling system (SnowModel). J Hydrometeorol 7(6):1259–1276. https://doi.org/10.1175/JHM548.1
  • 101. Liu B, Coulthard TJ (2017) Modelling the interaction of aeolian and fluvial processes with a combined cellular model of sand dunes and river systems. Comput Geosci 106:1–9. https://doi.org/10.1016/j.cageo.2017.05.003
  • 102. Lorang MS, Hauer FR (2017) Fluvial geomorphic processes. In: Hauer FR, Lamberti G (eds) Methods in stream ecology, vol 1. Academic Press, Cambridge. https://doi.org/10.1016/B978-0-12-416558-8.00005-6
  • 103. Maniatis G, Kurfeß D, Hampel A, Heidbach O (2009) Slip acceleration on normal faults due to erosion and sedimentation—results from a new three-dimensional numerical model coupling tectonics and landscape evolution. Earth Planet Sci Lett 284(3–4):570–582. https://doi.org/10.1016/j.epsl.2009.05.024
  • 104. Mark DM (1975) Geomorphometric parameters: a review and evaluation. Geografiska Annaler: Ser A Phys Geogr 57(3–4):165–177. https://doi.org/10.1080/04353676.1975.11879913
  • 105. Martin Y, Church M (2004) Numerical modelling of landscape evolution: geomorphological perspectives. Prog Phys Geogr 28(3):317–339. https://doi.org/10.1191/0309133304pp412ra
  • 106. McKean JA, Dietrich WE, Finkel RC, Southon JR, Caffee MW (1993) Quantification of soil production and downslope creep rates from cosmogenic 10Be accumulations on a hillslope profile. Geology 21(4):343–346. https://doi.org/10.1130/0091-7613(1993)021%3c0343:QOSPAD%3e2.3.CO,2
  • 107. Miller SR, Slingerland RL (2006) Topographic advection on fault-bend folds: Inheritance of valley positions and the formation of wind gaps. Geology 34(9):769–772. https://doi.org/10.1130/G22658.1
  • 108. Minasny B, McBratney AB (2001) A rudimentary mechanistic model for soil formation and landscape development: II. A two-dimensional model incorporating chemical weathering. Geoderma 103(1–2):161–179. https://doi.org/10.1016/S0016-7061(01)00075-1
  • 109. Minasny B, McBratney AB, Salvador-Blanes S (2008) Quantitative models for pedogenesis-a review. Geoderma 144(1–2):140–157. https://doi.org/10.1016/j.geoderma.2007.12.013
  • 110. Minasny B, Finke P, Stockmann U, Vanwalleghem T, McBratney AB (2015) Resolving the integral connection between pedogenesis and landscape evolution. Earth Sci Rev 150:102–120. https://doi.org/10.1016/j.earscirev.2015.07.004
  • 111. Moliere DR, Evans KG, Willgoose GR, Saynor MJ (2002) Temporal trends in erosion and hydrology for a post-mining landform at Ranger Mine, Northern Territory. Supervising Scientist Report, 165, Supervising Scientist, Darwin NT, USA
  • 112. Molina A, Govers G, Cisneros F, Vanacker V (2009) Vegetation and topographic controls on sediment deposition and storage on gully beds in a degraded mountain area. Earth Surf Proc Land 34(6):755–767. https://doi.org/10.1002/esp.1747
  • 113. Molnar P, Anderson RS, Kier G, Rose J (2006) Relationships among probability distributions of stream discharges in floods, climate, bed load transport, and river incision. J Geophys Res Earth Surf 111(F2):F02001. https://doi.org/10.1029/2005JF000310
  • 114. Momm HG, Wells RR, Bennett SJ (2018) Disaggregating soil erosion processes within an evolving experimental landscape. Earth Surf Proc Land 43(2):543–552. https://doi.org/10.1002/esp.4268
  • 115. Montgomery DR, Dietrich WE (1992) Channel initiation and the problem of landscape scale. Science 255(5046):826–830. https://doi.org/10.1126/science.255.5046.826
  • 116. Morgan RPC (1980) Field studies of sediment transport by overland flow. Earth Surf Process 5(4):307–316. https://doi.org/10.1002/esp.3760050403
  • 117. Moussirou B, Bonnet S (2018) Modulation of the erosion rate of an uplifting landscape by long-term climate change: an experimental investigation. Geomorphology 303:456–466. https://doi.org/10.1016/j.geomorph.2017.12.010
  • 118. Murphy BP, Johnson JP, Gasparini NM, Sklar LS (2016) Chemical weathering as a mechanism for the climatic control of bedrock river incision. Nature 532(7598):223. https://doi.org/10.1038/nature17449
  • 119. Murray AB, Paola C (2003) Modelling the effect of vegetation on channel pattern in bedload rivers. Earth Surf Process Landf 28:131–143. https://doi.org/10.1002/esp.428
  • 120. Nasir N, Selvakumar R (2018) Influence of land use changes on spatial erosion pattern, a time series analysis using RUSLE and GIS: the cases of Ambuliyar sub-basin India. Acta Geophys 66(5):1121–1130. https://doi.org/10.1007/s11600-018-0186-2
  • 121. Nearing MA, Lane LJ, Lopes VL (2017) Modeling soil erosion. In: Soil erosion research methods, Routledge, pp 127–158
  • 122. Newton AC, Hill RA, Echeverría C, Golicher D, Rey Benayas JM, Cayuela L, Hinsley SA (2009) Remote sensing and the future of landscape ecology. Prog Phys Geogr 33(4):528–546. https://doi.org/10.1177/0309133309346882
  • 123. Nones M, Di Silvio G (2016) Modeling of river width variations based on hydrological, morphological, and biological dynamics. J Hydraul Eng 142(7):04016012. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001135
  • 124. Nones M, Varrani A, Franzoia M, Di Silvio G (2019) Assessing quasi-equilibrium fining and concavity of present rivers: a modelling approach. CATENA 181:104073. https://doi.org/10.1016/j.catena.2019.104073
  • 125. O'Hara D, Karlstrom L, Roering JJ (2019) Distributed landscape response to localized uplift and the fragility of steady states. Earth Planet Sci Lett 506:243–254. https://doi.org/10.1016/j.epsl.2018.11.006
  • 126. Okin GS, Gillette DA (2001) Distribution of vegetation in wind-dominated landscapes: Implications for wind erosion modeling and landscape processes. J Geophys Res Atmos 106(D9):9673–9683. https://doi.org/10.1029/2001JD900052
  • 127. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263(5147):641–646. https://doi.org/10.1126/science.263.5147.641
  • 128. Pawlik Ł, Šamonil P (2018) Soil creep: The driving factors, evidence and significance for biogeomorphic and pedogenic domains and systems–a critical literature review. Earth Sci Rev 178:257–278. https://doi.org/10.1016/j.earscirev.2018.01.008
  • 129. Pelletier J (2008) Quantitative modeling of earth surface processes. Cambridge University Press. https://doi.org/10.1017/CBO9780511813849
  • 130. Pelletier JD, DeLong SB, Al-Suwaidi AH, Cline M, Lewis Y, Psillas JL, Yanites B (2006) Evolution of the Bonneville shoreline scarp in west-central Utah: Comparison of scarp-analysis methods and implications for the diffusion model of hillslope evolution. Geomorphology 74(1–4):257–270. https://doi.org/10.1016/j.geomorph.2005.08.008
  • 131. Perron JT, Dietrich WE, Kirchner JW (2008) Controls on the spacing of first-order valleys. J Geophys Res Earth Surf 113(F4):F04016. https://doi.org/10.1029/2007JF000977
  • 132. Phillips JD (2009) Biological energy in landscape evolution. Am J Sci 309(4):271–289. https://doi.org/10.2475/04.2009.01
  • 133. Phillips JD, Van Dyke C (2017) State-and-transition models in geomorphology. Catena 153:168–181. https://doi.org/10.1016/j.catena.2017.02.009
  • 134. Poesen J, Lavee H (1994) Rock fragments in top soils: significance and processes. CATENA 23(1–2):1–28. https://doi.org/10.1016/0341-8162(94)90050-7
  • 135. Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), 703. United States Department of Agriculture, Washington, DC
  • 136. Rixhon G, Briant RM, Cordier S, Duval M, Jones A, Scholz D (2017) Revealing the pace of river landscape evolution during the Quaternary: recent developments in numerical dating methods. Quatern Sci Rev 166:91–113. https://doi.org/10.1016/j.quascirev.2016.08.016
  • 137. Robinson RA, Slingerland RL (1998) Origin of fluvial grain-size trends in a foreland basin, the Pocono Formation on the central Appalachian Basin. J Sediment Res 68(3):473–486. https://doi.org/10.2110/jsr.68.473
  • 138. Román-Sánchez A, Willgoose G, Giráldez JV, Peña A, Vanwalleghem T (2019) The effect of fragmentation on the distribution of hillslope rock size and abundance: Insights from contrasting field and model data. Geoderma 352:228–240. https://doi.org/10.1016/j.geoderma.2019.06.014
  • 139. Rosenbloom NA, Anderson RS (1994) Hillslope and channel evolution in a marine terraced landscape, Santa Cruz, California. J Geophys Res Solid Earth 99(B7):14013–14029. https://doi.org/10.1029/94JB00048
  • 140. Ruetenik GA, Moucha R, Hoke GD (2016) Landscape response to changes in dynamic topography. Terra Nova 28(4):289–296. https://doi.org/10.1111/ter.12220
  • 141. Saco PM, Willgoose GR, Hancock GR (2006) Spatial organization of soil depths using a landform evolution model. J Geophys Res Earth Surf. https://doi.org/10.1029/2005JF000351
  • 142. Salles T (2016) Badlands: a parallel basin and landscape dynamics model. SoftwareX 5:195–202. https://doi.org/10.1016/j.softx.2016.08.005
  • 143. Schaap MG, Leij FJ, Van Genuchten MT (2001) Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251(3–4):163–176. https://doi.org/10.1016/S0022-1694(01)00466-8
  • 144. Schoorl JM, Veldkamp A (2016) Multiscale soil-landscape process modeling. In: Environmental soil-landscape modeling: geographic information technologies and pedometrics, CRC Press, pp 417–435
  • 145. Schumer R, Taloni A, Furbish DJ (2017) Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect. Geophys Res Lett 44(5):2281–2289. https://doi.org/10.1002/2016GL072134
  • 146. Schumm SA, Lichty RW (1965) Time, space, and causality in geomorphology. Am J Sci 263(2):110–119. https://doi.org/10.2475/ajs.263.2.110
  • 147. Scott AC (2018) Burning planet: the story of fire through time. Oxford University Press, Oxford
  • 148. Scull P, Franklin J, Chadwick OA, McArthur D (2003) Predictive soil mapping: a review. Prog Phys Geogr 27(2):171–197. https://doi.org/10.1191/0309133303pp366ra
  • 149. Shobe CM, Tucker GE, Barnhart KR (2018) The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution. Geosci Model Dev 10(12):4577–4604. https://doi.org/10.5194/gmd-10-4577-2017
  • 150. Shustikova I, Domeneghetti A, Neal JC, Bates P, Castellarin A (2019) Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography. Hydrol Sci J 64(14):1769–1782. https://doi.org/10.1080/02626667.2019.1671982
  • 151. Skinner CJ, Coulthard TJ, Schwanghart W, Wiel MJ, Hancock G (2018) Global sensitivity analysis of parameter uncertainty in landscape evolution models. Geosci Model Dev 11(12):4873–4888. https://doi.org/10.5194/gmd-11-4873-2018
  • 152. Sklar LS, Riebe CS, Marshall JA, Genetti J, Leclere S, Lukens CL, Merces V (2017) The problem of predicting the size distribution of sediment supplied by hillslopes to rivers. Geomorphology 277:31–49. https://doi.org/10.1016/j.geomorph.2016.05.005
  • 153. Sólyom PB, Tucker GE (2004) Effect of limited storm duration on landscape evolution, drainage basin geometry, and hydrograph shapes. J Geophys Res Earth Surf. https://doi.org/10.1029/2003JF000032
  • 154. Stark CP (2006) A self‐regulating model of bedrock river channel geometry. Geophys Res Lett. https://doi.org/10.1029/2005GL023193
  • 155. Stark CP, Passalacqua P (2014) A dynamical system model of eco-geomorphic response to landslide disturbance. Water Resour Res 50(10):8216–8226. https://doi.org/10.1002/2013WR014810
  • 156. Stock JD, Dietrich WE (2006) Erosion of steepland valleys by debris flows. Geol Soc Am Bull 118(9–10):1125–1148. https://doi.org/10.1130/B25902.1
  • 157. Strahler AH, Strahler AN (2006) Introducing physical geography, 4th edn. Wiley, Hoboken
  • 158. Strudley MW, Murray AB, Haff PK (2006) Regolith thickness instability and the formation of tors in arid environments. J Geophys Res Earth Surf. https://doi.org/10.1029/2005JF000405
  • 159. Temme AJ, Vanwalleghem T (2016) LORICA–a new model for linking landscape and soil profile evolution: development and sensitivity analysis. Comput Geosci 90(B):131–143. https://doi.org/10.1016/j.cageo.2015.08.004
  • 160. Tucker GE (2009) Natural experiments in landscape evolution. Earth Surf Proc Land 34(10):1450–1460. https://doi.org/10.1002/esp.1833
  • 161. Tucker GE, Bradley DN (2010) Trouble with diffusion: reassessing hillslope erosion laws with a particle‐based model. J Geophys Res Earth Surf. https://doi.org/10.1029/2009JF001264
  • 162. Tucker GE, Bras RL (2000) A stochastic approach to modeling the role of rainfall variability in drainage basin evolution. Water Resour Res 36(7):1953–1964. https://doi.org/10.1029/2000WR900065
  • 163. Tucker GE, Hancock GR (2010) Modelling landscape evolution. Earth Surf Proc Land 35:28–50. https://doi.org/10.1002/esp.1952
  • 164. Tucker GE, Slingerland RL (1994) Erosional dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study. J Geophys Res Solid Earth 99(B6):12229–12243. https://doi.org/10.1029/94JB00320
  • 165. Tucker GE, Whipple KX (2002) Topographic outcomes predicted by stream erosion models: sensitivity analysis and intermodel comparison. J Geophys Res Solid Earth 107(B9):ETG-1. https://doi.org/10.1029/2001JB000162
  • 166. Ugelvig SV, Egholm DL, Iverson N (2016) R. Glacial landscape evolution by subglacial quarrying: a multiscale computational approach. J Geophys Res Earth Surf 121(11):2042–2068. https://doi.org/10.1002/2016JF003960
  • 167. Van De Wiel MJ, Coulthard TJ, Macklin MG, Lewin J (2007) Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model. Geomorphology 90(3–4):283–301. https://doi.org/10.1016/j.geomorph.2006.10.024
  • 168. Vanwalleghem T, Stockmann U, Minasny B, McBratney AB (2013) A quantitative model for integrating landscape evolution and soil formation. J Geophys Res Earth Surf 118(2):331–347. https://doi.org/10.1029/2011JF002296
  • 169. Varrani A, Nones M, Gupana R (2019) Long-term modelling of fluvial systems at the watershed scale: examples from three case studies. J Hydrol 574:1042–1052. https://doi.org/10.1016/j.jhydrol.2019.05.012
  • 170. Warren SD, Ruzycki TS, Vaughan R, Nissen PE (2019) Validation of the unit stream power erosion and deposition (USPED) model at yakima training centre Washington. Northwest Sci 92(sp5):338–345. https://doi.org/10.3955/046.092.0504
  • 171. Welivitiya WDP, Willgoose GR, Hancock GR (2016) Exploring the sensitivity on a soil area-slope-grading relationship to changes in process parameters using a pedogenesis model. Earth Surf Dyn 4(3):607–625. https://doi.org/10.5194/esurf-4-607-2016
  • 172. Welivitiya WDP, Willgoose GR, Hancock GR (2019) A coupled soilscape–landform evolution model: model formulation and initial results. Earth Surf Dyn 7(2):591–607. https://doi.org/10.5194/esurf-7-591-2019
  • 173. Whipple KX, Tucker GE (2002) Implications of sediment‐flux‐dependent river incision models for landscape evolution. J Geophys Res Solid Earth 107(B2):ETG 3-1–ETG 3-20. https://doi.org/10.1029/2001JB000162
  • 174. Whipple KX, Forte AM, DiBiase RA, Gasparini NM, Ouimet WB (2017) Timescales of landscape response to divide migration and drainage capture: implications for the role of divide mobility in landscape evolution. J Geophys Res Earth Surf 122(1):248–273. https://doi.org/10.1002/2016JF003973
  • 175. Wilkes MA, Gittins JR, Mathers KL, Mason R, Casas-Mulet R, Vanzo D, Mckenzie M, Murray-Bligh J, England J, Gurnell AM, Jones JI (2019) Physical and biological controls on fine sediment transport and storage in rivers. Wiley Interdiscip Rev Water 6(2):e1331. https://doi.org/10.1002/wat2.1331
  • 176. Willgoose GR (2005) Mathematical modeling of whole landscape evolution. Annu Rev Earth Planet Sci 33:443–459. https://doi.org/10.1146/annurev.earth.33.092203.122610
  • 177. Willgoose GR (2018) Principles of soilscape and landscape evolution. Cambridge University Press, Cambridge
  • 178. Willgoose GR, Sharmeen S (2006) A one‐dimensional model for simulating armouring and erosion on hillslopes: 1. model development and event‐scale dynamics. Earth Surf Process Landf 31(8):970–991. https://doi.org/10.1002/esp.1398
  • 179. Willgoose GR, Bras RL, Rodriguez-Iturbe I (1989) A physically based channel network and catchment evolution model. TR322. Ralph M. Parsons Laboratory, Massachusetts, USA
  • 180. Willgoose GR, Bras RL, Rodriguez-Iturbe I (1991) A physically based coupled network growth and hillslope evolution model: 1 Theory. Water Resour Res 27:1671–1684. https://doi.org/10.1029/91WR00935
  • 181. Williams RD, Brasington J, Hicks DM (2016) Numerical modelling of braided river morphodynamics: review and future challenges. Geography Compass 10(3):102–127. https://doi.org/10.1111/gec3.12260
  • 182. Wobus CW, Kean JW, Tucker GE, Anderson RS (2008) Modeling the evolution of channel shape: Balancing computational efficiency with hydraulic fidelity. J Geophys Res Earth Surf 113(F2):F02004. https://doi.org/10.1029/2007JF000914
  • 183. Yetemen O, Istanbulluoglu E, Vivoni ER (2010) The implications of geology, soils, and vegetation on landscape morphology: Inferences from semi-arid basins with complex vegetation patterns in Central New Mexico, USA. Geomorphology 116(3–4):246–263. https://doi.org/10.1016/j.geomorph.2009.11.026
  • 184. Zhang D, Narteau C, Rozier O, Courrech du Pont S (2012) Morphology and dynamics of star dunes from numerical modelling. Nat Geosci 5:463–467. https://doi.org/10.1038/ngeo1503
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76f2ab9f-ab17-48e4-9596-a1afb3392ea1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.