PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shelf Life Prediction of a Novel Liquid Fuel, 2-Dimethylaminoethyl Azide (DMAZ)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
2-Dimethylaminoethyl azide (DMAZ) is a good replacement for the hydrazine family in space industries. In this article, the accelerated ageing test method was applied for predicting the shelf life of DMAZ. The effective parameters on the storage of the fuel were temperature, the type of gas atmosphere with its pressure over the liquid fuel, and moisture. Appropriate conditions for DMAZ storage were N2 at a pressure of 3 bar and a moisture content of 0.05 wt.%. The sigmoid form of the decomposition curves obtained revealed that the decomposition reaction is autocatalytic. Modelling of the decomposition rate showed that the shelf life of DMAZ was 7.73 years at 25 °C.
Słowa kluczowe
Rocznik
Strony
675--687
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Faculty of Chemical Engineering, Malek Ashtar University of Technology, P.O. Box: 16765/3454, Tehran, Iran
autor
  • Faculty of Chemical Engineering, Malek Ashtar University of Technology, P.O. Box: 16765/3454, Tehran, Iran
Bibliografia
  • [1] Schmidt, E. W. Hydrazine and its Derivatives. John Wiley & Sons, New York 2001, ISBN 978-0-471-41553-4.
  • [2] Sutton, G. P.; Biblarz, P. Rocket Propulsion Elements. John Wiley & Sons, New York 2010, ISBN 978-0470080245.
  • [3] Sutton, G. P. History of Liquid Propellant Rocket Engines in the United States. J. Propul. Power 2003, 19(6): 978-1007.
  • [4] Agrawal, J. P. High Energy Materials: Propellants, Explosives and Pyrotechnics Wiley-VCH, Weinheim 2010, ISBN 978-3-527-32610-5.
  • [5] Meyers, C. J.; Kosowski, B. M. Dimethylamino Ethylazide – A Replacement of Hydrazine Derivatives in Hypergolic Fuel Applications. 34th Int. Annu. Conf. ICT, Germany 2003, 1-4.
  • [6] McQuaid, M. J.; McNesby, K. L.; Rice, B. M.; Chabalowski, C. F. Density Functional Theory Characterization of the Structure and Gas-phase, Mid-infrared Absorption Spectrum of 2-Azido N,N-Dimethylethanamine (DMAZ). ARL-TR-2770, 2002.
  • [7] Chen, C. C.; McQuaid, M. A Thermochemical Kinetic-based Study of Ignition Delays for 2-Azidoethanamine − Red Fuming Nitric Acid Systems: 2-Azido-N-Methylethanamine (MMAZ) vs. 2-Azido-N,N-Dimethylethanamine (DMAZ). ARL-TR-6787, 2014.
  • [8] Thompson, D. M. Tertiary Amine Azides in Hypergolic Liquid or Gel Fuels Propellant Systems. US Patent 6 013 143 A, 2000.
  • [9] Edwards, T. Liquid Fuels and Propellants for Aerospace Propulsion: 1903-2003. J. Propul. Power 2003, 19(6): 1089-1107.
  • [10] Kokan, T. Characterizing High-Energy-Density Propellants for Space Propulsion Applications. PhD Thesis, Georgia Institute of Technology, 2007.
  • [11] Sengupta, D. High Performance, Low Toxicity Hypergolic Fuel. US Patent 8 685 186 B2, 2014.
  • [12] Pakdehi, S. G.; Rezaei, S.; Motamedoshariati, H.; Keshavarz, M. H. Sensitivity of Dimethyl Amino Ethyl Azide (DMAZ) as a Non-carcinogenic and High Performance Fuel to Some External Stimuli. J. Loss Prevent. Proc. 2014, 29: 277-282.
  • [13] Pakdehi, S. G.; Ajdari, S.; Hashemi, A.; Keshavarz, M. H. Performance Evaluation of Liquid Fuel 2-Dimethyl Amino Ethyl Azide (DMAZ) with Liquid Oxidizers. J. Energ. Mater. 2015, 33(1): 17-23.
  • [14] Sun, H.; Law, C. K. Thermochemical and Kinetic Analysis of the Thermal Decomposition of Monomethyl Hydrazine: An Elementary Reaction Mechanism. J. Phys. Chem. A. 2007, 111(19): 3748-3760.
  • [15] Widegren, J.; Bruno, T. J. Thermal Decomposition Kinetics of Kerosene-Based Rocket Propellants. 1. Comparison of RP-1 and RP-2. Energy Fuels 2009, 23(11): 5517-5522.
  • [16] Andersen, P. C.; Bruno, T. J. Thermal Decomposition Kinetics of RP-1 Rocket Propellant. Ind. Eng. Chem. Res. 2005, 44(6): 1670-1676.
  • [17] Cordes, H. F. The Thermal Decomposition of 1,1-Dimethyl Hydrazine, J. Phys. Chem. 1961, 65 (9): 1473-1477.
  • [18] Zabarnick, S. Studies of Jet Fuel Thermal Stability and Oxidation Using a Quartz Crystal Microbalance and Pressure Measurements. Ind. Eng. Chem. Res. 1994, 33(5): 1348-1354.
  • [19] Mohammadi, K.; Gorji, M. Prediction of Amine-Based Liquid Rocket Propellant Shelf Life. Propellants Explos. Pyrotech. 2013, 38(4): 541-546.
  • [20] Gorji, M.; Mohammadi, K. Comparison of Berthelot and Arrhenius Approaches for Prediction of Liquid Propellant Shelf Life. Propellants Explos. Pyrotech. 2013, 38(5): 715-720.
  • [21] Guo, S.; Wang, Q.; Sun, J.; Liao, X.; Wang, Z. S. Study on the Influence of Moisture Content on Thermal Stability of Propellant. J. Hazard. Mater. 2009, 168(1): 536-541.
  • [22] Zarghami, M.; Tzanetakis, T.; Afarin, Y.; Thomson, M. J. Effects of Fuel Aging on the Combustion Performance and Emissions of a Pyrolysis Liquid Biofuel and Ethanol Blend in a Swirl Burner. Energy Fuels 2016, 30(3): 2209-2215.
  • [23] Shekhar, H. Prediction and Comparison of Shelf Life of Solid Rocket Propellants Using Arrhenius and Berthelot Equations. Propellants Explos. Pyrotech. 2011, 36(4): 356-359.
  • [24] Black, B. H.; Hardy, D. R.; Beal, E. J. Accelerated Hydroperoxide Formation in Jet Fuel at 65 °C in Capped and Vented Bottles. Energy Fuels 1991, 5(2): 281-282.
  • [25] Pande, S. G.; Hardy, D. R. Effect of Copper, MDA, and Accelerated Aging on Jet Fuel Thermal Stability as Measured by the Gravimetric JFTOT. Energy Fuels 1995, 9(1): 177-182.
  • [26] Pande, S. G.; Black, B. H.; Hardy, D. R. A Reliable and Practical Accelerated Test Method for Predicting the Long-Term Storage Stabilities of Aviation Turbine Fuels Based on Hydroperoxide Formation. Energy Fuels 1995, 9(1): 183-187.
  • [27] Pakdehi, S. G.; Rouhandeh, H. Sub-Atmospheric Distillation for Water (1) + Dimethyl Amino Ethyl Azide (2) Mixture. Iran. J. Chem. Eng. 2016, 35(2): 107-111.
  • [28] Crowl, D. A.; Louvar, J. F. Chemical Process Safety: Fundamentals with Applications. 3rd ed., Prentice Hall, New York 2011; ISBN 9780131382268.
  • [29] Chen, C. C.; McQuaid, M. J. Mechanism and Kinetics for the Thermal Decomposition of 2-Azido-N,N-Dimethylethanamine (DMAZ). J. Phys. Chem. A. 2012, 116(14): 3561-3576.
  • [30] Roy, G. D. Advances in Chemical Propulsion-Science to Technology. CRC Press, New York 2002; ISBN: 9780849311710.
  • [31] Srciven, E. F. V. Azides and Nitrenes Reactivity and Utility. Academic Press Inc., Orlando 1984; ISBN 0126334803.
  • [32] Platz, M. S.; Moss, R. A.; Jones, Jr. M. Reviews of Reactive Intermediate Chemistry. Wiley-Interscience, New Jersey 2004; ISBN 9780471233244.
  • [33] Gizeli, E.; Lowe, C. R. Biomolecular Sensors. Tylor & Francis, London 2002; ISBN 074840791X.
  • [34] Bansal, R. K. Organic Reaction Mechanisms, 3rd ed., McGraw-Hill, New Delhi 1998; ISBN 185573182723.
  • [35] Lide, D. R. Handbook of Chemistry and Physics. 90th ed., CRC Press, Boston 1992; ISBN 1420090844.
  • [36] Gauss, A. Fuel and Hydrocarbon Vaporization. AD-769 709, 1973.
  • [37] Dee, L. A. Dimethyl-2-Azidoethylamine, Chemical and Physical Property Data. WSTF-IR-0139, 2000.
  • [38] Kokan, T.; Olds, J. R. An Experimental and Analytical Study of High-Energy-Density Propellants for Liquid Rocket Engines. AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Proc. Semin., 41st, Tucson, USA 2005, 1-5.
  • [39] Levenspiel, O. Chemical Reaction Engineering. 3rd ed., John Wiley & Sons, New York 1998; ISBN 9780471254249.
  • [40] Logan, S. R. Chemical Kinetics, Principles and Advanced Discussions. Addison Wesley Longman, New York 1996; ISBN 9780582251854.
  • [41] Military Specification: Propellant, Monomethyl Hydrazine. MIL-P-27404B, 1979.
  • [42] Military Specification: Propellant, Unsymmetrical Dimethyl Hydrazine. MIL-P-25604D, 1978.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76f05773-35a5-4e8c-bb71-ab31cb2302cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.