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Abstract: 2-Dimethylaminoethyl azide (DMAZ) is a good replacement for the 
hydrazine family in space industries.  In this article, the accelerated ageing test 
method was applied for predicting the shelf life of DMAZ.  The effective parameters 
on the storage of the fuel were temperature, the type of gas atmosphere with its 
pressure over the liquid fuel, and moisture.  Appropriate conditions for DMAZ 
storage were N2 at a pressure of 3 bar and a moisture content of 0.05 wt.%.  The 
sigmoid form of the decomposition curves obtained revealed that the decomposition 
reaction is autocatalytic.  Modelling of the decomposition rate showed that the 
shelf life of DMAZ was 7.73 years at 25 °C.
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1	 Introduction

Hydrazine and its derivatives (including anhydrous hydrazine, monomethyl-
hydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH)) have been 
extensively used in satellite carrier rockets since 1959 [1-3].  All members of this 
group are carcinogenic [1, 4].  Scientists and engineers are searching for a liquid 
fuel as a good replacement.  2-Dimethylaminoethyl azide (DMAZ) was found 
to be a good replacement and was introduced by the US army in 2001 [5-10].  
It is non-carcinogenic and has desirable characteristics such as good thermo-
physical, energetic, safety and environmental properties [5, 11, 12].  Also, some 
of the performance properties of DMAZ with various liquid oxidizers have been 
studied [13].
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The liquid DMAZ produced, like other space fuels, should be stored in 
storage tanks near the launch station.  For this purpose, it is poured into the 
tanks and pressurized with an inert gas.  Therefore, it is important to know the 
ambient conditions (such as temperature, atmosphere above the liquid DMAZ and 
moisture) for storage of liquid fuel DMAZ.  Since DMAZ is a novel liquid fuel, 
there are no published data for its storage.  However, there is adequate information 
for other liquid fuels.  Sun and Law studied the thermal decomposition of 
MMH [14].  Experimental work was reported by Widegren and Bruno on the 
thermal decomposition of the liquid fuels RP-1 and RP-2 [15, 16].  Also, Cordes 
derived a first order equation for the degradation of UDMH during the thermal 
decomposition reaction [17].  Moreover, Zabarnick studied jet fuel stability in 
the presence of oxygen [18].  Recently, Gorji and Mohammadi investigated 
the shelf life of the xylidine – trimethylamine mixture [19, 20].  The effect of 
moisture on the thermal stability of the fuels was studied by Guoa et al. [21].  
Based on these studies, the effective parameters for storage of a liquid fuel are 
essentially: temperature, type and pressure of atmosphere over the liquid fuel, 
and moisture.  The undesirable products of fuel decomposition or destruction 
reaction(s) may influence some of the fuel’s properties (such as boiling and 
melting points, viscosity, surface tension, formation of a new phase in the storage 
tank etc.) and ultimately the performance of the fuel [22].  For the novel liquid 
fuel DMAZ, these storage parameters need to be studied.

A time-consuming method for estimating the shelf life or storage time of 
a fuel is surveillance of the storage tank under normal storage conditions for 
a prolonged period of time and measurement of the performance parameters 
regularly to ascertain its actual shelf life.  However, the use of accelerated ageing 
for fuels at elevated temperatures has been advised.  On the basis of the shelf 
life at these temperatures, the shelf life under normal storage conditions (usually 
25 °C) is calculated by the Arrhenius equation [20, 23-26].

In the present work, the effective parameters for the storage of liquid 
fuel DMAZ have been studied at elevated temperatures.  A  kinetic model 
has been presented for the prediction of the shelf life of DMAZ at normal 
storage temperatures.

2	 Material and Methods

2.1	 Chemicals
DMAZ was synthesized by the reaction between 2-dimethylaminoethyl chloride 
and sodium azide and concentrated in a vacuum distillation column (at P = 40 kPa) 
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up to a purity of 99.93 wt.% [27].  It was colourless.  Distilled water was used 
to study the effect of moisture.

2.2	 Apparatus
The arrangement used for this work consisted of a Pyrex glass cylinder (20 cm3)
equipped with a cap and had an inverted U-tube in the tail.  A stainless steel 
316-L cylinder, with an internal diameter of 80 cm and height of 90 cm, was 
also used.  The metallic cylinder was equipped with a pressure gauge (Fentinelli 
model, Solbiate Olona Co., Italy) and a  metallic effluent valve (D3712G2Y 
model, Germany) for purge gases.

2.3	 Test procedure
Five cubic centimeters of liquid fuel DMAZ was poured into the glass cylinder, 
which was then inserted in the metallic cylinder.  The contents of the glass cylinder 
was flushed several times with an inert gas to remove oxygen.  The purge number 
was calculated as 6 with a pressure of 4 bar [28].  Then, the closed metallic 
cylinder was inserted in a programmable oven (model UFB-500-L, Memmert 
Company, Germany).  After certain time periods, liquid samples were removed 
from the cylinder for analysis.

2.4	 Analysis
A four-digit analytical balance (Sartorius, AC121S model, Germany) was used 
to weigh the initial DMAZ samples.

The water content in the initial DMAZ sample was measured by a Karl-
Fischer titration apparatus (KF 701 Titrino model, Swiss).

For the determination of the DMAZ concentration in the shelf life tests, 
samples were injected into a calibrated gas chromatograph (model 6890, Agilent 
Technology Co., USA) equipped with a flame ionization detector.  The detector 
temperature was 270 °C.  Helium was used as the carrier gas at a flow rate of 
1.5 mL/min. 

3	 Results and Discussion

As was mentioned earlier, the studied parameters were temperature, moisture, 
type of atmosphere gas over the liquid DMAZ and its pressure.  Pyrex glass was 
used to eliminate any effect of storage tank material.  The parameter levels used 
in the experiments are tabulated in Table 1.



678 S. G. Pakdehi, M. Niknam

Copyright © 2017 Institute of Industrial Organic Chemistry, Poland

Table 1.	 Parameters levels used in the shelf life study for liquid fuel DMAZ
Parameters Levels

Temperature [°C] 60, 70, 80, 90
Atmosphere over liquid DMAZ N2, He, Ar, zero air
Absolute pressure of the atmosphere over liquid 
DMAZ [bar] 1, 2, 4, 5

Moisture [wt.%] 0.05, 0.35, 1.04, 2.53

Pure DMAZ is colourless.  But in the accelerated tests, the colour of the 
samples changed over time.  As may be observed in Figure 1, the samples’ colour 
became gradually yellowish and finally black.

Figure 1.	 The change in colour of the samples during the accelerated ageing test

3.1	 Effect of temperature on the shelf life of DMAZ
The effect of temperature on the DMAZ concentration is shown in Figure 2 at 
four temperatures, 60 °C, 70 °C, 80 °C and 90 °C.  As is shown, the DMAZ 
concentration changes very slowly initially.  Then, the slope changes significantly.  
Also, greater changes in the DMAZ concentration are observed at the higher 
temperatures.  DMAZ decomposition may occur through N-N2 bond cleavage, 
with nitrene formation and N2 release [29-31]: 

(CH3)2-N-CH2-CH2-N3 → (CH3)2-N-CH2-CH=NH + N2� (1)

An increase in the vessel pressure was observed when the temperature was 
increased, confirming the thermal decomposition of DMAZ.  Since a nitrene 
is a  very reactive intermediate [32-34], it may react with DMAZ molecules 
leading to degradation of the DMAZ, so that the DMAZ degradation reaction 
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proceeds autocatalytically.  An increase in temperature also leads to more rapid 
decomposition of DMAZ.

Figure 2.	 The destruction vs. time of liquid fuel DMAZ at four different 
temperatures (atmosphere: N2, atmosphere pressure: 3 bar, moisture: 
0.05 wt.%)

3.2	 Effect of atmosphere type on the shelf life of DMAZ
N2, Ar, He and zero air (or dry air) gases were used to evaluate the effect of the 
atmosphere type on the shelf life of liquid fuel DMAZ (Figure 3).  The results 
showed that dry air had the most significant effect on the decomposition rate.  
This is due to the presence of oxygen in the zero air.  In other words, DMAZ is 
oxidized in the presence of oxygen.

As was stated earlier, the temperature has a destructive effect on the shelf 
life of DMAZ.  Therefore, the rate of heat input and its diffusivity within the 
liquid or gas phase should be lowered.  Among the inert gases, N2 exhibited the 
lowest decomposition rate.  This is because of the low thermal diffusivity of N2.  
Also, heat passes rapidly through He gas because helium conducts heat quickly 
relative to its volumetric heat capacity or thermal bulk.  Table 2 shows the thermal 
diffusivity of N2, Ar and He.  As shown, N2 has the lowest thermal diffusivity.

Table 2.	 Thermal diffusivity of the inert gases N2, Ar, He [35]
Gas atmosphere N2 Ar He

Thermal diffusivity [m2/s] 1.6 × 10−5 2.2 × 10−5 1.9 × 10−4
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Figure 3.	 Effect of atmosphere type on the decrease in DMAZ concentration 
(vessel material: Pyrex, atmosphere pressure: 3  bar, moisture: 
0.05 wt.%, T = 90 °C, t = 1000 h)

Figure 4.	 Effect of N2 pressure on the decrease in DMAZ concentration 
(atmosphere: N2, moisture: 0.05 wt.%, T = 90 °C, t = 1000 h)

3.3	 Effect of atmosphere pressure on the shelf life of DMAZ 
As was mentioned in Section 3.1, degradation of DMAZ occurs in the gas phase 
and subsequently the decomposition products return to the liquid phase and in 
turn accelerate autocatalytically the DMAZ decomposition.  To prevent this, 
the vaporization rate of liquid DMAZ should be lowered.  This rate depends on 
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the atmospheric velocity distribution above the liquid, the partial pressure of 
DMAZ and its diffusion coefficient in the gas phase [36].  If pure liquid DMAZ is 
pressurized with an inert gas such as N2 at an elevated temperature of 90 °C, the 
gas velocity above the liquid and the diffusivity of DMAZ in N2 will be reduced.  
Also, since the vapour pressure of DMAZ at 90 °C is about 0.8 bar [37] (normal 
boiling point of DMAZ is 135 °C [37]), the partial pressure of DMAZ in the gas 
phase will be lowered.  Figure 4 shows that an increase in pressure of an inert 
gas such as N2 reduces the decomposition rate of DMAZ.

3.4	 Effect of moisture on the shelf life of DMAZ 
The presence of water in DMAZ generates an electrolyte.  Water is a dielectric 
material which can change the electrostatic interaction between charges resulting 
from ions in solution.  The viscosity of water is greater than that of DMAZ [38].  
Thus the viscosity of the mixture is higher than that of pure DMAZ, so that the 
motion of electrostatically charged entities will be slower within the mixture and 
the energy distribution will not be proper, leading to the formation of molecules 
with higher energy than the activation energy barrier.  Thus the entities with higher 
energy destroy DMAZ molecules faster.  The products from decomposition of 
DMAZ may react with water and produce nitro acid or nitric acid.  The above 
acids may again react with DMAZ molecules and accelerate the destruction of 
DMAZ.  The effect of the moisture content is shown in Figure 5.  As is illustrated, 
DMAZ storability will be longer at the lower moisture content.

Figure 5.	 Effect of moisture on DMAZ concentration:  moisture percentage 
(wt.%),  final concentration of DMAZ (wt.%), (atmosphere 
above the DMAZ liquid: N2, atmosphere pressure: 3 bar, T = 90 °C, 
t = 1000 h)
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3.5	 Modelling of the decomposition rate 
The sigmoid form of the decomposition curves (Figure  2) suggests that the 
decomposition reaction of DMAZ should be autocatalytic [39].  Generally, 
autocatalytic reactions are represented as:

A k1  B + C� (2)

A + B k2  B + C� (3)

where A is DMAZ, and B and C are decomposition products.  B  behaves as 
a decomposition catalyst.  It is assumed that Equation 2 is a first order reaction.  
The autocatalytic reaction occurs in Equation 3 [40].  If the DMAZ concentration at 
t = 0 and t = t were a and (a-x), respectively, the rate equation may be expressed as:

)()( ,2,1 xCxkxCk
dt
dx

DMAZoDMAZo −+−= � (4)

By integration and insertion of x = 0 at t = 0, the ordinary differential equation 
(ODE) may be solved as:

tCkk
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+
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where: 
x	 reduction in DMAZ concentration or DMAZ conversion,
k1	 the rate constant of the first order reaction,
k2	 the rate constant of the autocatalytic reaction,
Co,DMAZ	 initial concentration of DMAZ,
t:	 time.

Given x at any time, the rate constants were calculated using MATHCAD 
software (Version 14) at temperatures of 60 °C, 70 °C, 80 °C and 90 °C.  The 
results are tabulated in Table 3.

Table 3.	 Decomposition reaction rate constants for DMAZ decomposition at 
different temperatures

Reaction rate 
constant

Temperature [°C]
60 70 80 90

k1 [s−1] 5.07 × 10−6 1.40 × 10−5 3.12 × 10−5 1.03 × 10−4

k2 [s−1] 4.27 × 10−3 5.21 × 10−3 5.95 × 10−3 6.25 × 10−3
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Plots of Lnk1 and Lnk2 versus 1/T represent negative slopes −E1/RT and 
–E2/RT respectively, where T  is in Kelvin (Figures 6 and 7).  The activation 
energies for Equations 2 and 3 were determined as 98.7 kJ/mol and 15.8 kJ/mol, 
respectively.  In other words, the activation energy for the autocatalytic path 
(Equation 3) is about one-sixth of the first order path (Equation 2).
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3.6	 Estimation of the shelf life of liquid fuel DMAZ 
Under the appropriate conditions for DMAZ storage (vessel material: Pyrex, N2 

as the atmosphere over liquid fuel DMAZ at a pressure of 3 bar, moisture content 
of 0.05 wt.%), the shelf life is predictable.  Since liquid fuel DMAZ is novel, no 
military standard data has as yet been reported for it.  Therefore, based on the 
conventional standards for liquid fuels such as monomethylhydrazine (MMH) 
[41] or unsymmetrical dimethylhydrazine (UDMH) [42], if the acceptable 
DMAZ concentration were to be 98  wt.%, the time required to change the 
DMAZ concentration from 99.93 wt.% to 98 wt.% at 25 °C may be calculated 
using Equation 5.  All of the parameters for Equation 5 are tabulated in Table 4, 
where x is the conversion percentage (99.93% − 98% = 1.93% = 0.0193).  Thus, 
the shelf life was calculated as 67780 h or 7.73 years.  Therefore, it seems that 
the novel liquid fuel DMAZ has a relatively good shelf life.

Table 4.	 Parameters used for the estimation of the shelf life of DMAZ at 
25 °C (298 K)

Parameter a x k1 k2

Value 99.93 1.93 7.71 × 10−8 3.32 × 10−5

4	 Conclusions

To estimate the shelf life of liquid fuel 2-dimethylaminoethyl azide (DMAZ), 
the fuel was tested under accelerated conditions of temperature (60-90  °C), 
gas atmosphere over the liquid fuel (N2, Ar, He and zero air) at pressures of 
1-5 bar and moisture content (0.05-2.53 wt.%).  The results showed that the 
appropriate conditions for storage of DMAZ are: N2 as the atmosphere gas at 
a pressure of 3 bar and a moisture content of 0.05 wt.%.  The sigmoid form of 
the decomposition curves showed that the decomposition reaction should be 
autocatalytic.  The temperature dependencies of the decomposition reaction 
rate constants were determined.  Under the appropriate conditions of storage, 
the calculations showed that the shelf life of this fuel was 7.73 years at 25 °C.

Abbreviations and symbols
Co,DMAZ	 Initial concentration of DMAZ
DMAZ	 2-Dimethylaminoethyl azide ((CH3)2-N-CH2-CH2-N3)
Ei	 Activation energy for step i [kJ/mol]
k1	 The rate constant of the first order reaction [s−1]
k2	 The rate constant of the autocatalytic reaction [s−1]
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MMH	 Monomethylhydrazine
P	 Pressure [bar]
R	 Universal gas constant [8.314 J/mol·K]
T	 Temperature [°C or K]
t	 Time [h]
UDMH	 Unsymmetrical dimethylhydrazine
x	 Reduction in DMAZ concentration or DMAZ conversion
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