PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Automatic cardiac arrhythmia classification based on hybrid 1-D CNN and Bi-LSTM model

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cardiovascular diseases (CVDs) are a group of heart and blood vessel ailments that can cause chest pain and trouble breathing, especially while active. However, some patients with heart disease have no symptoms and may benefit from screening. Electrocardiogram (ECG) measures electrical activity of the heart using sensors positioned on the skin over the chest, and it can be used for the timely detection of CVDs. This work presents a technique for classification among lethal CVDs like atrial fibrillation (Afib), ventricular fibrillation (Vfib), ventricular tachycardia (Vtec), and normal (N) beats. A novel combination of Stationary wavelet transforms (SWT) and a two-stage median filter with Savitzky–Golay (SG) filter were utilised for pre-processing of the ECG signal followed by segmentation and z-score normalisation process. Next, 1-D six-layers convolutional neural network (1- D CNN) was used for automated and reliable feature extraction. After that, bidirectional long short-term memory (Bi-LSTM) was used in the back end for classification of arrhythmias. The novelty of the present work is the use of 1-D CNN and Bi-LSTM architecture followed by relevant and effective pre-processing of the ECG signal makes this technique accurate and reliable. An accuracy of 99.41 % was achieved using 10-fold cross validation, which is superior to the existing state-of-art methods. Thus, this method presents a noble, accurate, and reliable method for classification of cardiac arrhythmia beats.
Twórcy
  • Department of Electronics & Communication Engineering, Rajiv Gandhi University, India
  • School of Electronics Engineering, VIT-AP University, India
Bibliografia
  • [1] Rangayyan RM. Biomedical signal analysis. New Jersey: John Wiley & Sons; 2015.
  • [2] Rahul J, Sora M, Sharma LD. Exploratory data analysis based efficient QRS-complex detection technique with minimal computational load. Phys Eng Sci Med 2020;43(3):1049–67.
  • [3] Rahul J, Sora M, Sharma LD. Dynamic thresholding based efficient QRS complex detection with low computational overhead. Biomed Signal Process Control 2021;67:102519.
  • [4] Rahul J, Sora M, Sharma LD. A novel and lightweight P, QRS, and T peaks detector using adaptive thresholding and template waveform. Comput Biol Med 2021;132:104307.
  • [5] Sharma LD, Sunkaria RK. A robust QRS detection using novel pre-processing techniques and kurtosis based enhanced efficiency. Measurement 2016;87:194–204.
  • [6] Markides V, Schilling RJ. Atrial fibrillation: classification, pathophysiology, mechanisms and drug treatment. Heart 2003;89(8):939–43.
  • [7] Xia Y, Wulan N, Wang K, Zhang H. Detecting atrial fibrillation by deep convolutional neural networks. Comput Biol Med 2018;1(93):84–92.
  • [8] Rahul J, Sora M, Sharma LD, Bohat VK. An improved cardiac arrhythmia classification using an RR interval-based approach. Biocybern Biomed Eng 2021;41(2):656–66.
  • [9] Petmezas G, Haris K, Stefanopoulos L, Kilintzis V, Tzavelis A, Rogers JA, et al. Automated atrial fibrillation detection using a hybrid CNN-LSTM network on imbalanced ECG datasets. Biomed Signal Process Control 2021;63:102194.
  • [10] Verma A, Dong X. Detection of ventricular fibrillation using random forest classifier. J Biomed Sci Eng 2016;09(5):259–68.
  • [11] Jekova I, Krasteva V. Real time detection of ventricular fibrillation and tachycardia. Physiol Meas 2004;25(5):1167–78.
  • [12] Li Q, Rajagopalan C, Clifford GD. Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans Biomed Eng 2013;61(6):1607–13.
  • [13] Khadra L, Al-Fahoum AS, Binajjaj S. A quantitative analysis approach for cardiac arrhythmia classification using higher order spectral techniques. IEEE Trans Biomed Eng 2005;52 (11):1840–5.
  • [14] Tsipouras MG, Fotiadis DI, Sideris D. An arrhythmia classification system based on the RR-interval signal. Artif Intell Med 2005;33(3):237–50.
  • [15] Arumugam M, Sangaiah AK. Arrhythmia identification and classification using wavelet centered methodology in ECG signals. Concurrency Comput: Practice Exp 2020;32(17):e5553.
  • [16] Yeh YC, Chiou CW, Lin HJ. Analyzing ECG for cardiac arrhythmia using cluster analysis. Expert Syst Appl 2012;39 (1):1000–10.
  • [17] Mjahad A, Rosado-Muñoz A, Bataller-Mompeán M, FrancésVíllora JV, Guerrero-Martínez JF. Ventricular Fibrillation and Tachycardia detection from surface ECG using time-frequency representation images as input dataset for machine learning. Comput Methods Programs Biomed 2017;141:119–27.
  • [18] Mandal S, Mondal P, Roy AH. Detection of Ventricular Arrhythmia by using Heart rate variability signal and ECG beat image. Biomed Signal Process Control 2021;68:102692.
  • [19] Chetan A, Tripathy RK, Dandapat S. A diagnostic system for detection of atrial and ventricular arrhythmia episodes from electrocardiogram. J Med Biol Eng 2018;38(2):304–15.
  • [20] Alwan Y, Cvetkovic Z, Curtis MJ. Methods for improved discrimination between ventricular fibrillation and tachycardia. IEEE Trans Biomed Eng 2018;65(10):2143–51.
  • [21] Xu Y, Wang D, Zhang W, Ping P, Feng L. Detection of ventricular tachycardia and fibrillation using adaptive variational mode decomposition and boosted-CART classifier. Biomed Signal Process Control 2018;1(39):219–29.
  • [22] Panigrahy D, Sahu PK, Albu F. Detection of ventricular fibrillation rhythm by using boosted support vector machine with an optimal variable combination. Comput Electr Eng 2021;91:107035.
  • [23] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521 (7553):436–44.
  • [24] Sabut S, Pandey Om, Mishra BSP, Mohanty M. Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network. Phys Eng Sci Med 2021;44 (1):135–45.
  • [25] Panda R, Jain S, Tripathy RK, Acharya UR. Detection of shockable ventricular cardiac arrhythmias from ECG signals using FFREWT filter-bank and deep convolutional neural network. Comput Biol Med 2020;124:103939.
  • [26] Mathunjwa BM, Lin YT, Lin CH, Abbod MF, Shieh JS. ECG arrhythmia classification by using a recurrence plot and convolutional neural network. Biomed Signal Process Control 2021;64:102262.
  • [27] Lai D, Fan X, Zhang Y, Chen W. Intelligent and efficient detection of life-threatening ventricular arrhythmias in short segments of surface ECG signals. IEEE Sens J 2021;21 (13):14110–20.
  • [28] Jin Y, Qin C, Huang Y, Zhao W, Liu C. Multi-domain modeling of atrial fibrillation detection with twin attentional convolutional long short-term memory neural networks. Knowl-Based Syst 2020;193:105460.
  • [29] Wang J. An intelligent computer-aided approach for atrial fibrillation and atrial flutter signals classification using modified bidirectional LSTM network. Inf Sci 2021;574:320–32.
  • [30] Chen C, Hua Z, Zhang R, Liu G, Wen W. Automated arrhythmia classification based on a combination network of CNN and LSTM. Biomed Signal Process Control 2020;57:101819.
  • [31] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000;101(23):e215–20.
  • [32] Kumar A, Tomar H, Mehla VK, Komaragiri R, Kumar M. Stationary wavelet transform based ECG signal denoising method. ISA Trans 2021;114:251–62.
  • [33] Lenis G, Pilia N, Loewe A, Schulze WHW, Dössel O. Comparison of baseline wander removal techniques considering the preservation of ST changes in the ischemic ECG: a simulation study. Comput Math Methods Med 2017;2017:1–13.
  • [34] Asgari S, Mehrnia A, Jan Y-K. A novel low-complexity digital filter design for wearable ECG devices. PLoS ONE 2017;12(4): e0175139.
  • [35] Mohebbian MR, Alam MW, Wahid KA, Dinh A. Single channel high noise level ECG deconvolution using optimized blind adaptive filtering and fixed-point convolution kernel compensation. Biomed Signal Process Control 2020;57:101673.
  • [36] Rahul J, Sora M. Powerline interference removal technique using digital notch filter in ECG. Adv Appl Math Sci 2021;20 (7):1269–77.
  • [37] Singh P, Pradhan G, S. S. Denoising of ECG signal by non-local estimation of approximation coefficients in DWT. Biocybern Biomed Eng 2017;37(3):599–610.
  • [38] Jenkal W, Latif R, Toumanari A, Dliou A, El B’charri O, Maoulainine FMR. An efficient algorithm of ECG signal denoising using the adaptive dual threshold filter and the discrete wavelet transform. Biocybern Biomed Eng 2016;36 (3):499–508.
  • [39] Kumar S, Panigrahy D, Sahu PK. Denoising of Electrocardiogram (ECG) signal by using empirical mode decomposition (EMD) with non-local mean (NLM) technique. Biocybern Biomed Eng 2018;38(2):297–312.
  • [40] Belkadi MA, Daamouche A. A robust QRS detection approach using stationary wavelet transform. Multimedia Tools Appl 2021;80(15):22843–64.
  • [41] Mallat S. A wavelet tour of signal processing. California: Elsevier; 1999.
  • [42] Kiranyaz S, Avci O, Abdeljaber O, Ince T, Gabbouj M, Inman DJ. 1D convolutional neural networks and applications: a survey. Mech Syst Sig Process 2021;151:107398.
  • [43] Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans Biomed Eng 2016;63(3):664–75.
  • [44] Abdeljaber O, Avci O, Kiranyaz S, Gabbouj M, Inman DJ. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J Sound Vib 2017;3(388):154–70.
  • [45] Abdeljaber O, Avci O, Kiranyaz MS, Boashash B, Sodano H, Inman DJ. 1-D CNNs for structural damage detection: verification on a structural health monitoring benchmark data. Neurocomputing 2018;275:1308–17.
  • [46] Eren L, Ince T, Kiranyaz S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier. J Signal Process Syst 2019;91(2):179–89.
  • [47] Hosny M, Zhu M, Gao W, Fu Y. A novel deep LSTM network for artifacts detection in microelectrode recordings. Biocybern Biomed Eng 2020;40(3):1052–63.
  • [48] Altuve M, Lizarazo P, Villamizar J. Human activity recognition using improved complete ensemble EMD with adaptive noise and long short-term memory neural networks. Biocybern Biomed Eng 2020;40(3):901–9.
  • [49] Qiu Y, Huang K, Xiao F, Shen H. A segment-wise reconstruction method based on bidirectional long shortterm memory for Power Line Interference suppression. Biocybern Biomed Eng 2018;38(2):217–27.
  • [50] Yildirim Ö. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput Biol Med 2018;96:189–202.
  • [51] Sharma A, Garg N, Patidar S, San Tan R, Acharya UR. Automated pre-screening of arrhythmia using hybrid combination of Fourier-Bessel expansion and LSTM. Comput Biol Med 2020;120:103753.
  • [52] Kłosowski G, Rymarczyk T, Wójcik D, Skowron S, Cieplak T, Adamkiewicz P. The use of time-frequency moments as inputs of lstm network for ecg signal classification. Electronics 2020;9(9):1452.
  • [53] Zheng Z, Chen Z, Hu F, Zhu J, Tang Q, Liang Y. An automatic diagnosis of arrhythmias using a combination of CNN and LSTM technology. Electronics 2020;9(1):121.
  • [54] Zheng J, Zhang J, Danioko S, Yao H, Guo H, Rakovski C. A 12- lead electrocardiogram database for arrhythmia research covering more than 10,000 patients. Sci Data 2020;7(1):1–8.
  • [55] Allam JP, Samantray S, Ari S. SpEC: A system for patient specific ECG beat classification using deep residual network. Biocybern Biomed Eng 2020;40(4):1446–57.
  • [56] Gan Y, Shi JC, He WM, Sun FJ. Parallel classification model of arrhythmia based on DenseNet-BiLSTM. Biocybern Biomed Eng 2021;41(4):1548–60.
  • [57] Wang T, Qin Y. A novel multi-scale convolutional network with attention-based bidirectional gated recurrent unit for atrial fibrillation discrimination. Biocybern Biomed Eng 2021;41(2):445–55.
  • [58] Rahul J, Sharma LD. Artificial intelligence-based approach for atrial fibrillation detection using normalised and short-duration time-frequency ECG. Biomed Signal Process Control 2022;71:103270.
  • [59] Baygin M, Tuncer T, Dogan S, Tan RS, Acharya UR. Automated arrhythmia detection with homeomorphically irreducible tree technique using more than 10,000 individual subject ECG records. Inf Sci 2021;575:323–37.
  • [60] Essa E, Xie X. An ensemble of deep learning-based multi-model for ECG heartbeats arrhythmia classification. IEEE Access 2021;9:103452–64.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76e457b9-fef2-4a38-bc0c-89ac65abfc78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.