PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature distribution analysis on the surface of the radiator with an infrared camera and thermocouples

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the work was to perform experimental tests for thermal analysis on the outer surface of the radiator. For this purpose, a localized test stand was used in one of the lecture rooms in Kielce University of Technology. The experiment concerned the isothermal character of a radiator during its operation. Temperature distribution was verified with two different methods: thermocouples and thermovision camera. The radiator was divided into 8 measuring fields and temperature was measured in each of them. The experiments were conducted for different supply flow rates of the medium. The results were presented by means of diagrams comparing both methods of temperature survey.
Słowa kluczowe
Rocznik
Strony
67--74
Opis fizyczny
Bibliogr. 23 poz., fot., rys., wykr.
Twórcy
  • Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • Ali A.H.H., Morsy M.G., 2010, Energy efficiency and indoor thermal perception: a comparative study between radiant panel and portable convective heaters, Energy Efficiency, 3, pp. 283-301.
  • ASHRAE-55, Thermal Environment Conditions for Human Occupancy, ASHRAE, 2013.
  • Bertolin C., Luciani A., Valisi L., Camuffo D., Landi A., Del Curto, D., 2015, Laboratory tests for the evaluation of the heat distribution efficiency of the Friendly-Heating heaters, Energy and Buildings, 107, pp. 319-328.
  • Causone F., Baldin F., Olesen B.W., Corgnati S.P., 2010, Floor heating and cooling combined with displacement ventilation: possibilities and limitations, Energy Building, 42, pp. 2338-2352.
  • Chatys R., Orman Ł.J., 2017, Technology and properties of layered composites as coatings for heat transfer enhancement, Mechanics of Composite Materials, 53 (3), pp. 351-360.
  • d'Ambrosio Alfano F.R., Olesen B.W., Palella B.I., Riccio G., 2014, Thermal comfort: design and assessment for energy saving, Energy Building, 81, pp. 326-336.
  • Dąbek L., Kapjor A., Orman Ł.J., 2019, Distilled water and ethyl alcohol boiling heat transfer on selected meshed surfaces, Mechanics & Industry, 20, 701.
  • Du C., Liu H., Li C., Xiong J., Li B., Li G., Xi Z., 2020, Demand and efficiency evaluations of local convective heating to human feet and low body parts in cold environments, Building and Environment, 171, 106662.
  • Dudkiewicz E., Jezowiecki J., 2011, The influence of orientation of a gas-fired direct radiant heater on radiant temperature distribution at a work station, Energy and Buildings, 43, pp. 1222-123.
  • Dudkiewicz E., Szałański P., 2019, A review of heat recovery possibility in flue gases discharge system of gas radiant heaters, E3S Web of Conferences 116, 00017.
  • Karimi M.S., Fazelpour F., Rosen M.A., Shams M., 2019, Comparative study of solar-powered underfloor heating system performance in distinctive climates, Renewable Energy, 130, pp. 524-535.
  • Karmann C., Stefano S., Bauman F., 2017, Thermal comfort in buildings using radiant vs. all-air systems: a critical literature review, Building Environment 111, pp. 123-131.
  • Légera J., Rousse D.R., Le Borgne K., Lassue S., 2018, Comparing electric heating systems at equal thermal comfort: An experimental investigation, Building and Environment, 128, pp. 161-169.
  • Lin B., Wang Z., Sun H., Zhu Y., Ouyang Q., 2016, Evaluation and comparison of thermal comfort of convective and radiant heating terminals in office buildings, Building Environment, 106, pp. 91-102.
  • Magni M., Campana J.P., Ochs F., Morini G.L., 2019, Numerical investigation of the influence of heat emitters on the local thermal comfort in a room, Building Simulation, 12, pp. 395-410.
  • Mikhailenko S.A., Miroshnichenko I.V., Sheremet M.A., 2021, Thermal radiation and natural convection in a large-scale enclosure heated from below: Building application, Building Simulations, 14, pp. 681-691.
  • Miroshnichenko I.V., Sheremet M.A., 2018, Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: A review, Renewable and Sustainable Energy Reviews, 82, pp. 40-59.
  • Samek L., De Maeyer-Worobiec A., Spolnik Z., Bencs L., Kontozova V., Bratasz Ł., Kozłowski R., Van Grieken R., 2007, The impact of electric overhead radiant heating on the indoor environment of historic churches, Journal of Cultural Heritage, 8, pp. 361-369.
  • Stokowiec K., Kotrys-Działak D., Jastrzębska P., 2022, Verification of the Fanger model with field experimental data, Journal of Physics: Conference Series, 2339, 012027.
  • Sun S., Xing X., Wang J., Sun X., Zhao C., 2022, Preheating time estimation in intermittent heating with hot-water radiators by considering model uncertainties, Building and Environment, 226, 109734.
  • Wang Y., Meng X., Yang X., Liu J., 2014, Influence of convection and radiation on the thermal environment in an industrial building with buoyancy-driven natural ventilation. Energy and Buildings, 75, pp. 394-401.
  • Zhang X., Yu J., Su G., Yao Z., Hao P., He F., 2016, Statistical analysis of turbulent thermal free convection over a small heat source in a large enclosed cavity, Applied Thermal Engineering, 93, pp. 446-455.
  • Wciślik S., 2017, Energy efficiency and economic analysis of the thermomodernization of forest lodges in the Świętokrzyski National Park, EPJ Web of Conferences 143, 02144.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76ddc42a-8153-4af8-9a3e-7ef982ec2d13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.