Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study examined the influence of acid cheese whey (ACW) addition on the nitrogen and phosphorus release in the co-digestion with sewage sludge (SS). The laboratory installation consisted of two semi-flow anaerobic digesters operating under mesophilic conditions. The concentrations of total nitrogen (TN), total phosphorus (TP), NH4+-N and PO43--P in the feedstock and the digestate were determined together with the appropriate release factors. The results indicate that the co-digestion of SS with ACW did not cause a significant increase in the concentration of biogenic elements both in the reactor feedstock and the digestate. Lower concentration of total nitrogen and total phosphorus was achieved in the digestate, both in whey and reference runs, probably due to partial retention in the digesters due to the precipitation processes.
Czasopismo
Rocznik
Tom
Strony
13--21
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
- Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40 B, 20-618 Lublin, Poland
Bibliografia
- 1. Act of 14 December 2012 On Waste (Dz. U. 2013 Poz. 21) (In Polish).
- 2. Akhiar A., Battimelli A., Torrijos M., Carrere H. 2017. Comprehensive characterization of the liquid fraction of digestates from full-scale anaerobic codigestion. Waste Management, 59, 118–128.
- 3. APHA, 2005. Standard methods for the examination of water and waste water, 21st Edn, American Public Health Association, Washington.
- 4. Banks Ch.J., Chesshire M., Heaven S., Arnold R. 2011. Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresource Technology, 102(2), 612–620.
- 5. Bertin L., Grilli S., Spagni A., Fava F. 2013. Innovative two-stage anaerobic process for effective codigestion of cheese whey and cattle manure. Bioresource Technology, 779–783.
- 6. Charalambous P., Shin J., Shin S.G., Vyrides I. 2020. Anaerobic digestion of industrial dairy wastewater and cheese whey. Performa, 147(1), 1–10.
- 7. Chatzipaschali A.A., Stamatis A.G. 2012. Biotechnological Utilization with a Focus on Anaerobic Treatment of Cheese Whey: Current Status and Prospects. Energies, 5(9), 3492–3525.
- 8. Czekała W., Lewicki A., Pochwatka P., Czekała A., Wojcieszek D., Jóźwiakowski K., Waliszewska H., 2020. Digestate management in polish farms as an element of the nutrient cycle. Journal of Cleaner Production, 242, 118454.
- 9. De Wit J.N. 2001. Lecturer’s handbook on whey and whey products. European Whey Products Association.
- 10. Elalami D., Carrere H., Monlau F., Abdelouahdi K., Oukarroum A., Barakate A. 2019. Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends. Renewable and Sustainable Energy Reviews 114, 109287.
- 11. Escalante H., Castro L., Amaya M.P., Jaimes L., Jaimes-Estévez J. 2018. Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Management 71, 711–718.
- 12. Feki E., Battimelli A., Savadi S., Dhouib A., Khoufi S. 2020. High-Rate Anaerobic Digestion of Waste Activated Sludge by Integration of Electro-Fenton Process. Molecules, 25(3), 626.
- 13. Fouda S., von Tucher S., Lichti F., Schmidhalter U. 2013. Nitrogen availability of various biogas residues applied to ryegrass. Journal of Plant Nutrition and Soil Science, 176, 572–584.
- 14. Fuchs W., Drosg B. 2013. Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Science & Technology, 67, 1984–1993.
- 15. Hublin A., Zelić B. 2013. Modelling of the whey and cow manure co-digestion process. Waste Management & Research, 31(4), 353–360.
- 16. Kim J., Yu Y., Lee Ch. 2013. Thermo-alkaline pretreatment of waste activated sludge at low-temperatures: Effects on sludge disintegration, methane production, and methanogen community structure. Bioresource Technology, 144, 194–201.
- 17. Kleyböcker A., Liebrich M,. Kasina M., Kraume M., Wittmaier M., Würdemanna H. 2011. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: Influence of aggregate formation on process stability. Waste Management, 32(6), 1122–1130.
- 18. Logan M., Visvanathan Ch. 2019. Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Management & Research, 37(1), 27–39.
- 19. Maragkaki A.E., Vasileiadis I., Fountoulakis M., Kyriakou A., Lasaridi K., Manios T. 2018. Improving biogas production from anaerobic co-digestion of sewage sludge with a thermal dried mixture of food waste, cheese whey and olive mill wastewater, Waste Management, 71, 644–651.
- 20. Maragkaki A.E., Fountoulakis M., Gypakis A., Kyriakou A., Lasaridi K., Manios T. 2017. Pilotscale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants. Waste Management, 59, 362–370.
- 21. Marcato C.E., Pinelli E., Pouech P., Winterton P., Guiresse M. 2008. Particle size and metal distributions in anaerobically digested pig slurry. Bioresour. Technol., 99, 2340–2348.
- 22. Martínez-Ruano J.A., Restrepo-Serna D.L., Carmona-Garcia E., Giraldo J.A.P., Aroca G., Cardona C.A. 2019. Effect of co-digestion of milk-whey and potato stem on heat and power generation using biogas as an energy vector: techno-economic assessment. Applied Energy, 241, 504–518.
- 23. Massé D.I., Croteu F., Massé L. 2007. The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors. Bioresource Technology, 93, 2819–2823.
- 24. Möller K., Müller T. 2012. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review Bioresource Technology. Engineering in Life Sciences, 12(3), 242–257.
- 25. Monlau F., Francavilla M., Sambusiti C., Antoniou N., Solhy A., Libutti A., Zabaniotou A., Barakat A., Monteleone M. 2016. Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment. Appl. Energy, 169, 652–662.
- 26. Montusiewicz A. 2015. Impact of bioaugmentation on nutrient release in anaerobic digestion of sewage sludge. Proceedings of ECOpole, 9(1), 269–277.
- 27. Montusiewicz A., 2012. Współfermentacja osadów ściekowych i wybranych kosubstratów jako metoda efektywnej biometanizacji. Monografie Komitetu Inżynierii Środowiska Polskiej Akademii Nauk, vol. 98, Lublin (in Polish).
- 28. Montusiewicz A., Lebiocka M., Szaja A. 2013. Variability of nutrients in co-digestion of sewage sludge and old landfill leachate, In: Environmental Engineering IV. Pawłowski A, Dudzińska M.R., Pawłowski L., editors. London: CRC Press, 225–230.
- 29. O’Brien B.J., Milligan E., Carver J. Roy E.D. 2019. Integrating anaerobic co-digestion of dairy manure and food waste with cultivation of edible mushrooms for nutrient recovery. Bioresource Technology, 285, 121312.
- 30. Ong L., Dagastine R.R., Kentish S.E., Gras S.L. 2013. Microstructure and Composition of Full Fat Cheddar Cheese Made with Ultrafiltered Milk Retentate. Foods (Basel, Switzerland), 2(3), 310–331.
- 31. Peng W., Lü F., Hao L., Zhang H., Shao L., He P. 2020a. Digestate management for high-solid anaerobic digestion of organic wastes: A review. Bioresour Technology, 297, 122485.
- 32. Peng W., Pivato A. 2019. Sustainable Management of Digestate from the Organic Fraction of Municipal Solid Waste and Food Waste Under the Concepts of Back to Earth Alternatives and Circular Economy, Waste and Biomass Valorization 10, 465–481.
- 33. Peng W., Pivato A., Cerminara G., Gabro F., Raga R. 2020b. Denitrification of Mature Landfill Leachate with High Nitrite in Simulated Landfill Columns Packed with Solid Digestate from Organic Fraction of Municipal Solid Waste. Waste and Biomass Valorization, 11, 411–421.
- 34. Peng W., Pivato A., Lavagnolo M.C., Raga R. 2018. Digestate application in landfill bioreactors to remove nitrogen of old landfill leachate. Waste Management, 74, 335346.
- 35. Prazeres A.R., Carvalho F., Rivas J. 2012. Cheese whey management: A review. Journal of Environmental Management 110, 48–68.
- 36. Przywara L. 2006. Warunki i możliwości usuwania fosforanów i fosforu ogólnego ze ścieków przemysłowych. Rozprawa Doktorska. Politechnika Krakowska im. Tadeusza Kościuszki, Bielsko-Biała (in Polish).
- 37. Rico C., Muñoz N., Fernández J., Rico J.L. 2015. High-load anaerobic co-digestion of cheese whey and liquid fraction of dairy manure in a one-stage UASB process: limits in co-substrates ratio and organic loading rate. Chem. Eng. J., 262, 794–802.
- 38. Risberg K., Cederlund H., Pell M., Arthurson V., Schnürer A. 2017. Comparative characterization of digestate versus pig slurry and cow manure – Chemical composition and effects on soil microbial activity. Waste Management, 61, 529–538.
- 39. Ryan M.P., Walsh G. 2016. The biotechnological potential of whey. Rev. Environ. Sci. Biotechnol., 15, 479–498.
- 40. Sheets J.P., Yang L., Ge X., Wang Z., Li Y. 2015. Beyond land application: emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. Waste Management, 44, 94–115.
- 41. Sosnowski P., Wieczorek A., Ledakowicz S. 2003. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Advances in Environmental Research, 7, 609–616.
- 42. Stefaniuk M., Oleszczuk P. 2015. Characterization of biochars produced from residues from biogas production. Journal of Analytical and Applied Pyrolysis, 115, 157–165.
- 43. Suzuki K., Tanaka Y., Kuroda K., Hanajima D., Fukumoto Y., Yasuda T., Waki M. 2007. Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device. Bioresource Technology, 98, 1573–1578.
- 44. Tambone F., Scaglia B., D’Imporzano G., Schievano A., Orzi V., Salati S., Adani F. 2010. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere, 81(5), 577–583.
- 45. Tampio E., Salo T., Rintala J. 2016. Agronomic characteristics of five different urban waste digestates. Journal of Environmental Management, 169, 293–302.
- 46. Teglia C., Tremier A., Martel J. 2011. Characterization of solid digestates: part 2, assessment of the quality and suitability for composting of six digested products. Waste and Biomass Valorization, 2, 113–126.
- 47. Treu L., Tsapekos P., Peprah M., Campanaro S., Giacomini A., Corich V. 2019. Microbial profiling during anaerobic digestion of cheese whey in reactors operated at different conditions. Bioresource Technology, 275, 375–385.
- 48. Vaneeckhaute C., Lebuf V., Michels E., Belia E., Vanrolleghem P.A., Tack F.M., Meers E. 2017. Nutrient recovery from digestate: systematic technology review and product classification. Waste and Biomass Valorization, 8(1), 21–40.
- 49. Vivekanand V., Mulat D.G., Eijsink V.G.H., Horn S.J. 2018. Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresource Technology, 249, 35–41.
- 50. Voća N., Krička T., Ćosić T., Rupić V., Jukić Ž., Kalambura S. 2005. Digested residue as a fertilizer after the mesophilic process of anaerobic digestion Plant. Soil Environ., 51, 262–266.
- 51. Xia J., Murphy J.D. 2016. Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems. Trends in Biotechnology, 34(4), 264–275.
- 52. Xu F., Li Y., Ge X., Yang L., Li Y. 2018. Anaerobic digestion of food waste – challenges and opportunities. Bioresource Technology, 247, 1047–1058.
- 53. Zhen G., Lu X., Kato H., Zhao Y., Li Y.Y. 2017. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renewable Sustainable Energy Rev., 69, 559–577.
- 54. Zirkler D., Peters A., Kaupenjohann M. 2014. Elemental composition of biogas residues: Variability and alteration during anaerobic digestion. Biomass and Bioenergy, 67, 89–98.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76db2219-dba0-403d-b363-37ee935218f8