PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Simulation of Low Velocity Impact Analysis of Fiber Metal Laminates

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A Fiber Metal Laminate (FML) consists of a laminate of several thin metal layers bonded with fiber–reinforced layers of composite materials. In this paper, the response of a fiber metal laminate is analysed on the basis of the residual velocity of the impactor. With the help of Design of Experiments (DOE) the data sets are generated and the residual velocity of the impactor was obtained by using Finite Element Analysis (FEA) software ABAQUS/Explicit. The FEA results are compared with experimental results available in the literature. Analysis of Variance (ANOVA) is used to understand the influence of process parameters on the response of FMLs. Results show that impactor geometry and thickness of the FML plate were the significant process parameters related to the response of low velocity impact analysis of FML and fiber configurations were found to be insignificant with regard to low velocity impact analysis performance. Finally the results show that aluminium based Aramid fibers (ARALL) and aluminium based glass fibers (GLARE) have higher impact strength when compared to other kinds of FMLs such as aluminium based carbon fibers (CARALL). Stress distribution in glass epoxy based FMLs are also studied.
Rocznik
Strony
515--530
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
  • Mechanical and Industrial Engineering University of Michigan{Ann Arbor, USA
autor
  • Mechanical and Industrial Engineering Washington University, St. Louis, USA
  • Aviation & Aerospace University of California Los Angeles, USA
autor
  • Department of Mechanical Engineering, Amrita School of Engineering Amirta Vishwa Vidyapeetham, Amrita University, India, devdharsu@yahoo.com
  • Department of Mechanical Engineering, Amrita School of Engineering Amirta Vishwa Vidyapeetham, Amrita University, India, devdharsu@yahoo.com
Bibliografia
  • [1] Amaro, A. M., Reis, P. N. B., De Moura, M. F. S. F. and N Neto, M. A.: Influence of multi–impacts on GFRP composites laminates. Composites Part B: Engineering, 52, 93–99, 2013.
  • [2] Batra, R. C., Gopinath, G. and Zheng, J. Q.: Damage and failure in low energy impact of fiber–reinforced polymeric composite laminates, Composite Structures, 94, 540–547, 2012.
  • [3] Bobbili, R., Paman, A., Madhu, V. and Gogia, A. K.: The effect of impact velocity and target thickness on ballistic performance of layered plates using Taguchi method, Materials & Design, 53, 719–726, 2014.
  • [4] Chai, G. B. and Manikandan, P.: Low velocity impact response of fibre–metal laminates – A review, Composite Structures, 107, 363–381, 2014.
  • [5] Chandrashekhara, K., Okafor, A. C. and Jiang, Y. P.: Estimation of contact force on composite plates using impact-induced strain and neural networks, Composites Part B: Engineering, 29, 363–370, 1998.
  • [6] De Moura, M. F. S. F. and Marques, A. T.: Prediction of low velocity impact damage in carbon–epoxy laminates, Composites Part A: Applied Science and Manufacturing, 33, 361–368, 2002.
  • [7] Fan, J., Guan, Z. and Cantwell, W. J.: Structural behaviour of fibre metal laminates subjected to a low velocity impact, Science China Physics, Mechanics and Astronomy, 54, 1168–1177, 2011.
  • [8] Iqbal, M. A., Chakrabarti, A., Beniwal, S. and Gupta, N. K.: 3D numerical simulations of sharp nosed projectile impact on ductile targets, International Journal of Impact Engineering, 37, 185–195, 2010.
  • [9] Kim, E.-H., Lee, I., Roh, J.-H., Bae, J.-S., Choi, I.-H. and Koo, K.-N.: Effects of shape memory alloys on low velocity impact characteristics of composite plate, Composite Structures, 93, 2903–2909, 2011.
  • [10] Lee, Y.-J. and Lin, C.-C.: Regression of the response surface of laminated composite structures, Composite Structures, 62, 91–105, 2003.
  • [11] Lee, Y.-S., Kang, K.-H. and Park, O.: Response of hybrid laminated composite plates under low velocity impact, Computers & Structures, 65, 965–974, 1997.
  • [12] Malik, M. H. and Arif, A. F. M.: ANN prediction model for composite plates against low velocity impact loads using finite element analysis, Composite Structures, 101, 290–300, 2013.
  • [13] Malik, M. H., Arif, A. F. M., Al-Sulaiman, F. A. and Khan, Z.: Impact resistance of composite laminate flat plates – A parametric sensitivity analysis approach, Composite Structures, 102, 138–147, 2013.
  • [14] Mitrevski, T., Marshall, I. H. and Thomson, R.: The influence of impactor shape on the damage to composite laminates, Composite Structures, 76, 116–122, 2006.
  • [15] Mitrevski, T., Marshall, I. H., Thomson, R., Jones, R. and Whittingham, B.: The effect of impactor shape on the impact response of composite laminates. Composite Structures, 67, 139–148, 2005.
  • [16] Mitrevski, T., Marshall, I. H., Thomson, R. S. and Jones, R.: Low velocity impacts on preloaded GFRP specimens with various impactors shapes, Composite Structures, 76, 209-217, 2006.
  • [17] Morini ere, F. D., Alderliesten, R. C., Sadighi, M. and Benedictus, R.: An integrated study on the low velocity impact response of the GLARE fibre–metal laminate, Composite Structures, 100, 89–103, 2013.
  • [18] Payeganeh, G. H., Ashenai Ghasemi, F. and Malekzadeh, K.: Dynamic response of fiber–metal laminates (FMLs) subjected to low velocity impact, Thin-Walled Structures, 48, 62–70, 2010.
  • [19] Pérez-Martin, M. J., Enfedaque, A., Dickson, W. and G alvez, F.: Impact Behavior of Hybrid Glass/Carbon Epoxy Composites.Journal of Applied Mechanics, 80, 031803–031803, 2013.
  • [20] Reis, P. N. B., Ferreira, J. a. M., Santos, P., Richardson, M. O. W. and Santos, J. B.: Impact response of Kevlar composites with filled epoxy matrix, Composite Structures, 94, 3520–3528, 2012.
  • [21] Sadighi, M., Alderliesten, R. C. and Benedictus, R.: Impact resistance of fibermetal laminates: A review, International Journal of Impact Engineering, 49, 77–90, 2012.
  • [22] Sadighi, M., Parnanen, T., Alderliesten, R. C., Sayeaftabi, M. and Benedictus, R.: Experimental and Numerical Investigation of Metal Type and Thickness Effects on the Impact Resistance of Fiber Metal Laminates, Applied Composite Materials, 19, 545–559, 2012.
  • [23] Shi, Y., Swait, T. and Soutis, C.: Modelling damage evolution in composite laminates subjected to low velocity impact, Composite Structures, 94, 2902–2913, 2012.
  • [24] Shokuhfar, A., Khalili, S. M. R., AshenaiGhasemi, F., Malekzadeh, K. and Raissi, S.: Analysis and optimization of smart hybrid composite plates subjected to low velocity impact using the response surface methodology (RSM), Thin-Walled Structures, 46, 1204–1212, 2008.
  • [25] Tsamasphyros, G. J. and Bikakis, G. S.: Analytical modelling to predict the low velocity impact response of circular GLARE fiber–metal laminates, Aerospace Science and Technology, 29, 28–36, 2013.
  • [26] Vlot, A.: Impact loading on fibre metal laminates.International Journal of Impact Engineering, 18, 291–307, 1996.
  • [27] Yang, L., Yan, Y. and Kuang, N.: Experimental and numerical investigation of aramid fibre reinforced laminates subjected to low velocity impact, Polymer Testing, 32, 1163–1173, 2013.
  • [28] Yarmohammad Tooski, M., Alderliesten, R. C., Ghajar, R. and Khalili, S. M. R.: Experimental investigation on distance effects in repeated low velocity impact on fiber–metal laminates, Composite Structures, 99, 31–40, 2013.
  • [29] Zhu, S. and Chai, G. B.: Low velocity impact response of fibre–metal laminates – Experimental and finite element analysis, Composites Science and Technology, 72, 1793–1802, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76d840a0-9aa5-4dfc-8678-01eb6712534d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.