PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced separation efficiency of low–rank coal using waste engine oil as a flotation collector

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Because of the rich oxygen-containing functional groups and developed pores on the Surface of low-rank coal, it is difficult to realize efficient separation during low-rank coal flotation using common oil collectors. Waste engine oil (WEO) is abundant in polar oxygen-containing functional groups and could be an alternative collector. In this study, the effect of WEO on low-rank coal floatation was assessed and engine oil (EO) was also used for comparison. The results show that the separation efficiency of low-rank coal can be significantly improved using WEO; additionally, 96.73% of the clean coal yield can be obtained when the WEO dosage was only 4 kg/t. Compared with EO, the bubble–particle induction time in the presence of WEO shortened from 430 to 220 ms. Moreover, more low-rank coal particles were captured and adhered to the bubble surface using WEO, which indicated a higher probability of bubble–particle attachment. Nonpolar components, polar components and metal ions synergistically promote the flotation separation enhancement of low-rank coal using WEO.
Słowa kluczowe
Rocznik
Strony
252--263
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
autor
  • Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
autor
  • Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
autor
  • Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • Henan Province Industrial Technology Research Institution of Resources and Materials, Zhengzhou University, Zhengzhou 450001, Henan, China
autor
  • Shandong chaomei clean energy co. LTD, Taian 271000, Shandong, China
autor
  • Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • cumtxyw@126.com
autor
  • Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • Henan Province Industrial Technology Research Institution of Resources and Materials, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Shandong chaomei clean energy co. LTD, Taian 271000, Shandong, China
Bibliografia
  • ALBIJANIC, B., OZDEMIR, O., NGUYEN, A. V., BRADSHAW, D., 2010. A review of induction and attachment Times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation. Adv. Colloid Interface Sci. 159, 1-21.
  • ALONSO, M.I., CASTANO, C., GARCIA, A.B., 2000. Performance of Vegetable Oils as Flotation Collectors for the Recovery of Coal from Coal Fines Wastes. Coal Prep. 21, 411-420.
  • ALONSO, M.I., VALDÉS, A.F., MARTÍNEZ-TARAZONA, R.M., GARCIA, A.B., 1999. Coal recovery from fines cleaning wastes by agglomeration with vegetable oils: effects of oil type and concentration. Fuel 78, 753-759.
  • ASSEMI, S., NGUYEN, A.V., MILLER, J.D, 2008. Direct measurement of particle–bubble interaction forces using atomic force microscopy. Int. J. Miner. Process. 89, 65-70.
  • ATEŞOK, G., ÇELIK, M. S., 2000. A new flotation scheme for a difficult-to-float coal using pitch additive in dry grinding. Fuel 79, 1509-1513.
  • BEDEKOVIĆ, G., 2016. A study of the effect of operating parameters in column flotation using experimental design. Physicochem. Probl. Miner. Process. 52, 523-535.
  • BRABCOVÁ, Z., KARAPANTSIOS, T., KOSTOGLOU, M., BASAŘOVÁ, P., MATIS, K., 2015. Bubble–particle collision interaction in flotation systems. Colloids Surf. A 473, 95-103.
  • BROŻEK, M., MLYNARCZYKOWSKA, A., 2013. An analysis of effect of particle size on batch flotation of coal. Physicochem. Probl. Miner. Process. 49, 341-356.
  • CAI, Y., DU, M., WANG, S., LIU, L., 2019. Determination of oxidation properties and flotation parameters of low-rank coal slimes. Powder Technol. 353, 20–26.
  • ÇINAR, M., 2009. Floatability and desulfurization of a low-rank (Turkish) coal by low-temperature heat treatment. Fuel Process. Technol. 90, 1300-1304.
  • DEY, S., 2012. Enhancement in hydrophobicity of low rank coal by surfactants — A critical overview. Fuel Process. Technol. 94, 151-158.
  • DEY, S., PAUL, G. M., PANI, S., 2013. Flotation behaviour of weathered coal in mechanical and column flotation cell. Powder Technol. 246, 689-694.
  • FÖRSTER, E., FRAENZA, C.C., KÜSTNER, J., ANOARDO, E., NIRSCHL, H., GUTHAUSEN, G., 2019. Monitoring of engine oil aging by diffusion and low-field nuclear magnetic resonance relaxation. Measurement 137, 673-682.
  • JIA, R., HARRIS, G. H., FUERSTENAU, D. W., 2000. An improved class of universal collectors for the flotation of oxidized and/or low-rank coal. Int. J. Miner. Process. 58, 99-118.
  • LI, H., MU, S., WENG, X., ZHAO, Y., SONG, S., 2016, Rutile flotation with Pb2+ ions as activator: Adsorption of Pb2+ at rutile/water interface. Colloids Surf. A 505, 431-437.
  • LI, Z., RAO, F., SONG, S., URIBE-SALAS, A., LÓPEZ-VALDIVIESOE, A., 2019. Effects of common ions on adsorption and flotation of malachite with salicylaldoxime. Colloids Surf. A 577, 421-428.
  • LIU, G., YANG, X., ZHONG, H., 2017. Molecular design of flotation collectors: A recent progress. Adv. Colloid Interface Sci. 246, 181-195.
  • LIU, W., ZHANG, S., WANG, W., ZHANG, J., YAN, W., DENG, J., FENG, Q., HUANG, Y., 2015. The effects of Ca(II) and Mg(II) ions on the flotation of spodumene using NaOL. Miner. Eng. 79, 8-13.
  • LIU, Y., OHARA, H., 2017. Energy-efficient fluidized bed drying of low-rank coal. Fuel Process. Technol. 155, 200-208.
  • MACEIRAS, R., ALFONSÍN, V., MORALES, F.J., 2017. Recycling of waste engine oil for diesel production. Waste Manage. 60, 351-356.
  • MURSITO, A.T., HIRAJIMA, T., SASAKI K., KUMAGAI, S., 2010. The effect of hydrothermal dewatering of Pontianak tropical peat on organics in wastewater and gaseous products. Fuel 89, 3934-3942.
  • ÖZBAYOĞLU, G., DEPCI, T., ATAMAN, N., 2009. Effect of Microwave Radiation on Coal Flotation. Energy Sources, Part A 31, 492-499.
  • OZDEMIR, O., ERSOY, O. F., GUVEN, O., TURGUT, H., CINAR, M., ÇELIK, M. S., 2018. Improved flotation of heat treated lignite with saline solutions containing mono and multivalent ions. Physicochem. Probl. Miner. Process. 54, 1070-1082.
  • OZKAN, S.G., KUYUMCU, H.Z., 2006. Investigation of mechanism of ultrasound on coal flotation. Int. J. Miner. Process. 81, 201-203.
  • PHAN, C.M., NGUYEN, A.V., MILLER, J.D., EVANS, G.M., JAMESON, G.J., 2003. Investigations of bubble–particle interactions. Int. J. Miner Process. 72, 239-254.
  • RAMOS-ESCOBEDO, G. T., PECINA-TREVIÑO, E. T., BUENO TOKUNAGA, A., CONCHA-GUERRERO, S. I.,
  • RAMOS-LICO, D., GUERRA-BALDERRAMA, R., ORRANTIA-BORUNDA, E., 2016. Bio-collector alternative for the recovery of organic matter in flotation processes. Fuel 176, 165-172.
  • SHUKLA, D., VENUGOPAL, R., 2019. Optimization of the process parameters for fine coal–oil agglomeration process using waste mustard oil. Powder Technol. 346, 316-325.
  • SRATA, L., FARRES, S., FETHI, F., 2019. Engine oil authentication using near infrared spectroscopy and chemometrics methods. Vib. Spectrosc. 100, 99-106. SÖNMEZ, I., CEBECI, Y., 2006. Performance of classic oils and lubricating oils in froth flotation of Ukraine coal. Fuel 85, 1866-1870.
  • TIAN, M., LIU, R., GAO, Z., CHEN, P., HAN, H., WANG, L., ZHANG, C., SUN, W., HU, Y., 2018. Activation mechanism of Fe(iii) ions in cassiterite flotation with benzohydroxamic acid collector. Miner. Eng. 119, 31-37.
  • TIAN, M., GAO, Z., SUN, W., HAN, H., SUN, L., HU, Y., 2018. Activation role of lead ions in benzohydroxamic acid flotation of oxide minerals: New perspective and new practice. J. Colloid Interface Sci. 529, 150-160.
  • TIAN, Q., ZHANG, Y., LI, G., WANG, Y., 2019. Application of Carboxylic Acid in Low-Rank Coal Flotation. Int. J. Coal Prep. Util. 39, 44-53.
  • VAMVUKA, D., AGRIDIOTIS, V., 2001. The effect of chemical reagents on lignite flotation. Int. J. Miner. Process. 61, 209-224.
  • VERRELLI, D. I., ALBIJANIC, B., 2015. A comparison of methods for measuring the induction time for bubble–particle attachment. Miner. Eng. 80, 8-13.
  • WANG, B., PENG, Y., VINK, S., 2013. Diagnosis of the Surface Chemistry Effects on Fine Coal Flotation Using Saline Water. Energy Fuels 27, 4869-4874.
  • WANG, J., WANG, L., HANOTU, J., ZIMMERMAN, W. B., 2017. Improving the performance of coal flotation using oscillatory air supply. Fuel Process. Technol. 165, 131-137.
  • WANG, X., ZHANG, Y., LIU, T., CAI, Z., 2019. Influence of metal ions on muscovite and calcite flotation: With respect to the pre-treatment of vanadium bearing stone coal. Colloids Surf. A 564, 89-94.
  • XIA, Y., YANG, Z., ZHANG, R., XING, Y., GUI, X., 2019. Performance of used lubricating oil as flotation collector for the recovery of clean low-rank coal. Fuel 239, 717-725.
  • XIA, Y., ZHANG, R., YANG, Z., XING, Y., GUI, X., 2019. Recovering clean low-rank coal using shale oil as a flotation collector. Energy Sources, Part A. 41, 1838-1846.
  • XIAO, W., CAO, P., LIANG, Q., PENG, H., ZHAO, H., QIN, W., QIU, G., WANG, J., 2017. The activation mechanism of bi3+ ions to rutile flotation in a strong acidic environment. Minerals 7, 113.
  • XING, Y., XU, M., GUI, X., CAO, Y., BABEL, B., RUDOLPH, M., WEBER, S., KAPPL, M., BUTT, H.J., 2018. The application of atomic force microscopy in mineral flotation. Adv. Colloid Interface Sci. 256, 373-392.
  • XING, Y., XU, M., GUO, F., LUO, J., ZHANG, Y., CAO, Y., GUI, X., 2019. Role of different types of clay in the floatability of coal: Induction time and bubble-particle attachment kinetics analysis. Powder Technol. 344, 814-818.
  • XU, L., TIAN, J., WU, H., LU, Z., YANG, Y., SUN, W., HU, Y., 2017. Effect of Pb2+ ions on ilmenite flotation and adsorption of benzohydroxamic acid as a collector. Appl. Surf. Sci. 425, 796-802.
  • XU, M., XING, Y., CAO, Y., GUI, X., 2019. Waste colza oil used as renewable collector for low-rank coal flotation. Powder Technol. 344, 611-616.
  • YANG, Z., XIA, Y., LI, M., MA, Z., XING, Y., GUI, X., 2019. Effects of pore compression pretreatment on the flotation of low-rank coal. Fuel 239, 63-69.
  • YANG, Z., XIA, Y., WEI, C., CAO, Y., SUN, W., LIU, P., CHENG, H., XING, Y., GUI, X., 2019. New flotation flowsheet for recovering combustible matter from fine waste coking coal. J. Clean. Prod. 225, 209-219.
  • YOU, X., He, M., Zhu, X., Wei, H., Cao, X., Wang, P., Li, L., 2019. Influence of surfactant for improving dewatering of brown coal: A comparative experimental and MD simulation study. Sep. Purif. Technol. 210, 473-478.
  • YOU, X., MA, C., LI, Z., LYU, X., LI, L., 2019. Adsorption behavior and XPS analysis of nonylphenol ethoxylate on low rank coal. Physicochem. Probl. Miner. Process. 55, 721-731.
  • ZHANG, N., CHEN, X., NICHOLSON, T., PENG, Y., 2019. The effect of saline water on the settling of coal slurry and coal froth. Powder Technol. 344, 161-168.
  • ZHAO, C., SUN, C., YIN, W., LUO, B., 2019. An investigation of the mechanism of using iron chelate as a collector during scheelite flotation. Miner. Eng. 131, 146-153.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76d33e52-562d-4223-bf81-f1afdd78f81e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.