Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Antenna phase center corrections (PCC) are now mandatory for high-accuracy Global Navigation Satellite System (GNSS) applications. Such corrections are being created nowadays using an anechoic chamber or an outdoor robot calibration method. Based on these two methods, PCCs are created in the function of the zenith angle and azimuth of the incoming GNSS signal. However, some antennas still lack complete PCC as both approaches are time and money-consuming. In the case of some antennas, mostly low-cost ones, no real phase center location information is provided. For another group of antennas, so-called elevation-only PCC derived from relative outdoor calibration is available. Elevation-only PCC, after transformation, could be utilized together with full PCC models in common GNSS observation processing. In the publication, the authors analyzed the differences resulting from the use of elevation-only instead of full PCC models. Values of such differences can be treated as a bias introduced into the solution due to the use of simplified PCCs. The results obtained prove that in the analyzed case study, such biases are negligible and do not exceed 1 mm in any case.
Czasopismo
Rocznik
Tom
Strony
213--226
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- niversity of Warmia and Mazury, Faculty of Geoengineering, Department of Geodesy, Olsztyn
autor
- niversity of Warmia and Mazury, Faculty of Geoengineering, Department of Geodesy, Olsztyn
Bibliografia
- 1. Baire Q., Bruyninx C., Legrand J., Pottiaux E., Aerts W., Defraigne P., Bergeot N., Chevalier J.M. (2013). Influence of different GPS receiver antenna calibration models on geodetic positioning. GPS Solution, vol. 18, pp. 529-539. https://doi.org/10.1007/s1029 1-013-0349-1.
- 2. Bakuła M., Przestrzelski P., Kaźmierczak R. (2015) Reliable Technology of Centimeter GPS/GLONASS Surveying in Forest Environments. IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 2, pp. 1029-1038. https://doi.org/10.1109/TGRS.2014.2332372.
- 3. Bartolomé J., Maufroid X., Fernandez-Hernandez I., López-Salcedo J., Seco-Granados G. (2014). Overview of Galileo System. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1830-2 2.
- 4. Bilich A., Mader G. (2010). GNSS absolute antenna calibration at the National Geodetic Survey. In: Proceedings ION GNSS 2010, Institute of Navigation, Portland, Oregon, OR, 21-24 Sepetember 2010, pp. 1369-1377.
- 5. Bozza V., Mancini L., Sozzetti A. (2016) Methods of detecting Exoplanets, chapter one: The Radial Velocity Method for the Detection of Exoplanets. Springer International Publishing, pp. 3-86. https://doi.org/10.1007/978-3-319-27458-4 1.
- 6. Dawidowicz K. (2011) Comparison of Using Relative and Absolute PCV Corrections in Short Baseline GNSS Observation Processing. Artificial Satellites, vol. 46, no. 1, pp. 19-31. https://doi.org/10.2478/v10018-011-0009-z.
- 7. Dawidowicz K., Krzan G., Świątek K. (2014) Urban area GPS positioning accuracy using ASG-EUPOS POZGEO service as a function of session duration. Artificial Satellites, vol. 49, no. 1, pp. 33-42. https://doi.org/10.2478/arsa-2014-0003.
- 8. Dawidowicz K., Krzan G. (2016). Analysis of PCC model dependent periodic signals in GLONASS position time series using Lomb-Scargle periodogram. Acta Geodynamica et Geomaterialia, vol. 13, pp. 299-314. https://doi.org/10.13168/AGG.2016.0012.
- 9. Dawidowicz K. (2019) Sub-hourly precise point positioning accuracy analysis - case study for selected ASG-EUPOS stations. Survey Review, vol. 52, no. 373, pp. 341-351. https://doi.org/10.1080/00396265.2019.1579988.
- 10. Dawidowicz K., Rapiński J., Śmieja M., Wielgosz P., Kwaśniak D., Jarmołowski W., Grzegory T., Tomaszewski D., Janicka J., Gołaszewski P., et al. (2021). Preliminary Results of an Astri/UWM EGNSS Receiver Antenna Calibration Facility. Sensors, vol. 21, no. 4639. https://doi.org/10.3390/s21144639.
- 11. Gorres B., Campbell J., Becker M., Siemes M. (2006). Absolute calibration of GPS antennas: laboratory results and comparison with field and robot techniques. GPS Solution, vol. 10, pp. 136-145. https://doi.org/10.1007/s10291-005-0015-3.
- 12. Hu Z., Zhao Q., Chen G., Wang G., Dai Z., Li T. (2015). First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University. Sensors, vol. 15, pp. 28717-28731. https://doi.org/10.3390/s151128717.
- 13. Kersten T., Krzan G., Dawidowicz K., Schon, S. (2022). On the Effect of Antenna Calibration Errors on Geodetic Estimates. In: J.T. Freymueller, L. Sánchez (ed.), Geodesy for a Sustainable Earth. International Association of Geodesy Symposia, vol. 154. Springer, Cham. https://doi.org/10.1007/1345 2022 153.
- 14. Krzan G., Dawidowicz K., Wielgosz P. (2020). Antenna phase center correction differences from robot and chamber calibrations: The case study LEIAR25. GPS Solution, vol. 24. https://doi.org/10.1007/s10291-020-0957-5.
- 15. Lyard F., Lefevre F., Letellier T., Francis O. (2006). Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, vol. 56, pp. 394-415. https://doi.org/10.1007/s10236-006-0086-x.
- 16. Pengfei C., Wei L., Jinzhong B., Hanjiang W., Yanhui C., Hua W. (2011). Performance of precise point positioning (PPP) based on uncombined dual¬frequency GPS observables. Survey Review, vol. 43, pp. 343-350. https://doi.org/10.1179/003962611X13055561708588.
- 17. Riddell A., Moore M., Hu G. (2015). Geoscience Australia's GNSS Antenna Calibration Facility: Initial Results. In Proceedings of the International Global Navigation Satellite Systems Society IGNSS Symposium, Gold Coast, Australia, 14-16 July 2015.
- 18. Scargle J.D. (1998) Studies in astronomical time series analysis. Astrophysical Journal, vol. 26, pp. 835-853. https://doi.org/10.1086/160554.
- 19. Schon S., Kersten T. (2013). On Adequate Comparison of Antenna Phase Center Variations. AGU Fall Meeting, 09-13 December, San Francisco, USA. Washington D.C. American Geophysical Union. https://doi.org/10.15488/4619.
- 20. Siejka Z. (2016) Opracowanie sieci wektorowej GNSS, zintegrowanej z pomiarami klasycznymi na przykładzie osnowy kolejowej (Adjustment od GNSS vector network, integrated woth classic surveying on the example of railway network). Journal of Civil Engineering, Environment and Architecture, vol. 62, no. 4, pp. 417-426. https://doi.org/10.7862/rb.2015.206.
- 21. Sieradzki R., Paziewski J. (2015) Study on reliable GNSS positioning with intense TEC fluctuations at high latitudes. GPS Solutions, vol. 20, pp. 553-563. https://doi.org/10.1007/s10291-015-0466-0.
- 22. Townsend R.H.D. (2010) Fast calculation of Lomb-Scargle periodogram using graphics processing units. Astrophysical Journal, vol. 191, pp. 247-253. https://doi.org/10.1088/0067-0049/191Z2/247.
- 23. Tupek A., Zrinjski M., Svaco M., Barković В. (2023). GNSS Receiver Antenna Absolute Field Calibration System Development: Testing and Preliminary Results. Remote Sensing, vol. 15, no. 4622. https://doi.org/10.3390/rs15184622.
- 24. Vanícek P. (1971) Further development and properties of the spectral analysis by least¬squares. Astrophysics Space Science, vol. 12, pp. 10-33. https://doi.org/10.1007/BF00656134.
- 25. Wang N., Yuan Y., Li Z., Montenbruck O., Tan B. (2016). Determination of differential code biases with multi-GNSS observations. Journal of Geodesy, vol. 90, no. 3, pp. 209-228. https://doi.Org/10.1007/s00190-015-0867-4.
- 26. Willi D., Lutz S., Brockmann E., Rothacher M. (2020). Absolute field calibration for multi- GNSS receiver antennas at ETH Zurich. GPS Solution, vol. 24, no. 28. https://doi.org/10.1007/s10291-019-0941-0.
- 27. Wübbena G., Menge F., Schmitz M., Seeber G., Volksen C. (2000). A NewApproach for Field Calibration of Absolute Antenna Phase Centre Variations. Navigation Journal of the Institute of Navigation, vol. 44. https://doi.org/10.1002/j.2161- 4296.1997.tb02346.x.
- 28. Zeimetz P., Kuhlmann H. (2008). On the Accuracy of Absolute GNSS Antenna Calibration and the Conception of a New Anechoic Chamber. In: Proceedings of the FIG Working Week 2008, Stockholm, Sweden, 14-19 June.
- 29. Zhou F., Dong D., Li W., Jiang X., Wickert J., Schuh H. (2018). GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solution, vol. 22, no. 33. https://doi.org/10.1007/s10291-018-0699-9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76c69e18-5098-4ee3-be42-ea7b15b64f63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.