
Article citation info:  
Gałka T. A new approach to diagnostic symptom assessment based on information content measures. Diagnostyka. 2016;17(3):103-108 

 

103

 

 

DIAGNOSTYKA, 2016, Vol. 17, No. 3 ISSN 1641-6414
e-ISSN 2449-5220

 
A NEW APPROACH TO DIAGNOSTIC SYMPTOM ASSESSMENT 

BASED ON INFORMATION CONTENT MEASURES 
 

Tomasz GAŁKA 
Institute of Power Engineering – Research Institute 

8 Mory St, 01-330 Warszawa, Poland 
e-mail: tomasz.galka@ien.com.pl 

 
Abstract  

A complex diagnostic object typically generates a large number of diagnostic symptoms. For proper lifetime 
consumption monitoring it is necessary to select those which best represent technical condition deterioration. Such 
selection may be based on the Singular Value Decomposition method. The paper presents a novel alternative 
approach, which employs an information content measure. As the end of object life is approached, symptoms are to 
an increasing extent dominated by deterministic lifetime consumption processes and therefore become more 
predictable. Thus symptoms with the highest information content decrease rate should be considered most useful. For 
a proper assessment, however, symptom sensitivity to condition parameters should also be addressed. A new measure 
referred to as representativeness factor is proposed. Suitability of such approach is demonstrated for the fluid-flow 
system of a large steam turbine. 
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NOWA METODA OCENY SYMPTOMÓW DIAGNOSTYCZNYCH OPARTA NA MIARACH 

ZAWARTOŚCI INFORMACJI 
 

Streszczenie 
Złożone obiekty diagnozowania zwykle są źródłem wielu symptomów diagnostycznych. Dla właściwego 

monitorowania wyczerpywania żywotności należy wybrać te z nich, które najlepiej odwzorowują degradację stanu 
technicznego. Wybór ten można oprzeć na metodzie rozkładu względem wartości szczególnej. W pracy 
przedstawiono nowatorskie alternatywne podejście, w którym wykorzystuje się miarę zawartości informacji. Wraz ze 
zbliżaniem się do końca życia obiektu symptomy są w coraz większym stopniu określone przez deterministyczne 
procesy ubytku żywotności, a zatem stają się coraz bardziej przewidywalne. Za najbardziej użyteczne należy zatem 
uznać symptomy z najszybszym spadkiem zawartości informacji. We właściwej ocenie należy jednak uwzględnić 
także wrażliwość symptomu na parametry stanu. Zaproponowano nową miarę określoną jako współczynnik 
reprezentatywności. Przydatność takiego podejścia została zademonstrowana na przykładzie układu przepływowego 
turbiny parowej. 
 
Słowa kluczowe: wyczerpywanie żywotności, symptom diagnostyczny, zawartość informacji 

 
INTRODUCTION 

 
A complex object typically generates a large 

number of diagnostic symptoms, each of them being 
related to condition parameters vector by some spe-
cific diagnostic relation. Moreover, these symptoms 
are typically influenced also by control parameters 
and interference. In lifetime consumption moni-
toring it is therefore necessary to select those symp-
toms which best represent object condition 
deterioration. A possible approach is to employ 
methods based on Singular Value Decomposition 
(SVD), originally proposed by Cempel (see e.g. [1]). 
The author tested the suitability of this approach to 
condition monitoring of steam turbine fluid-flow 
systems [2] with encouraging results. An alternative 

approach can be based on information content 
measures.  

 
1. INFORMATION CONTENT MEASURES 

 
The concept of employing an information 

content measure (ICM) for diagnostic symptoms 
assessment was put forward by the author [3] on the 
basis of certain consideration concerning the very 
nature of diagnostic symptoms. The basic relation 

S(θ) = Φ[X(θ), R(θ), Z(θ)]                  (1) 
implies that diagnostic symptoms vector S depends 
on both deterministic (condition parameters vector 
X) and random (vectors of control R and interferen-
ce Z) variables; θ denotes time and Φ is the symp-
tom operator. We may therefore treat any Si ∈ S as a 
random variable with time-dependent parameters. 
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Any Si may thus be analyzed in terms of information 
content. As the end of object lifetime is approached, 
influence of condition parameters becomes domi-
nant, as both R and Z are, for a given object, 
basically characterized by time-independent statisti-
cal distributions. This means that the components of 
S become more deterministic, and this is equivalent 
to information content measure decrease [4]. The 
rate of this decrease with time thus quantifies the 
symptom representativeness. 

First information content measure was 
introduced by Shannon [5] and termed Shannon 
entropy. It is still widely employed. Alternative 
measures proposed e.g. by Rényi [4] or Tsallis [6] 
failed to find widespread practical applications, 
mainly due to problems with physical interpretation 
of certain factors that appear in relevant equations. 
Shannon entropy H was originally conceived for 
verbal communication and is therefore of discrete 
nature: 
 

,                   (2) 
 

where pi denotes the probability of the ith event: 
 

(3) 
 
and  K is a constant dependent on the logarithm base 
b. Typically b = 2, e or 10, which gives h in bits, 
nats and dits, respectively. Diagnostic symptoms 
are, however, characterized by continuous 
distributions. We may therefore employ a measure 
known as continuous or differential entropy h, given 
by [7] 
 

,                                               (4) 
 

where p(Si) denotes the symptom probability density 
distribution. As long as we are interested in the 
shape of the h(θ) function rather than its absolute 
value, both K and b are irrelevant; in the following, 
b = e was assumed. It has to be noted that 
differential entropy is not a continuous analogue of 
the Shannon entropy and may assume negative 
values (although proper interpretation of this 
occurrence has not yet been given). As it is the 
shape of the h(θ) that is of importance, we may 
employ differential entropy, which simplifies 
calculations. 

Calculations of h(θ) employ the moving time 
window procedure. Within each window, a 
statistical distribution is fitted to measurement data 
and parameters of this distribution are plotted 
against time. In order to perform this operation, a 
symptom probability distribution type has to be 
assumed. Some considerations concerning this issue 
may be found in [3]. In particular, Weibull and 
gamma distributions have been found suitable. It has 
been shown by the author, however, that distribution 
type choice is not critical [8]. An example shown in 
Fig.1 illustrates that Weibull, gamma and normal 

distributions yield comparable results, although, 
formally speaking, normal distribution is not 
supported by basic considerations employing the 
Energy Processor model. It is therefore justified to 
use normal distribution, for which h is given by a 
simple equation [7]: 
 

(5) 

2. PRE-PROCESSING OF MEASUREMENT 
DATA 

 
Diagnostic symptom time histories are often 

characterized by a large number of outliers. This is 
typically the case for complex industrial objects 
operated in plant environment, with numerous 
sources of interference. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. An example of continuous entropy time 
histories obtained with Weibull (W), gamma (G) 

and normal (N) distributions (after [8]) 
 

There is no generally accepted and precise 
definition of an outlier. According to Grubbs [9], 
‘an outlying observation, or outlier, is one that 
appears to deviate markedly from other members of 
the sample in which it occurs’. From the point of 
view of information theory outliers are equivalent to 
noise and should be removed. This may be 
accomplished by so-called peak trimming [3]. This 
procedure is based on the assumption that, if for the 
kth symptom value reading Si(θk) 

Si(θk)/Si(θk-1) > ch  and  Si(θk)/Si(θk+1) > ch    (6) 
or 

Si(θk)/Si(θk-1) < cl  and  Si(θk)/Si(θk+1) < cl   (7) 
then Si(θk) is considered an outlier and replaced by 
[Si(θk-1) + Si(θk+10]/2. Situations described by Eq.(6) 
are more typical and usually correspond to external 
interference or transient operational conditions, 
while those described by Eq.(7) are often just plain 
measurement errors. Upper and lower threshold 
values (ch and cl, respectively) are adjusted experi-
mentally and depend on the object under consi-
deration. In the following, ch = 1.5 and cl = 0.7 were 
assumed; these values have been found reasonable 
for steam turbines [10]. 

As already mentioned, time histories h(θ) are 
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determined employing the time window procedure. 
For a meaningful determination of statistical 
parameters within such window, however, at least 
weak stationarity is required. It may be noted that 
the above definition of an outlier also implicitly 
implies stationarity. This condition is certainly not 
fulfilled for θ close to time to breakdown θb, as θ → 
θb ⇒  Si(θ) → ∞. In such circumstances, parameters 
such as mean value and standard deviation no longer 
describe statistical properties of a random variable. 
For this reason, Si has to be replaced by the trend-
normalized Si’, according to [8] 
 

,                (8) 
 
where lower index t indicates values determined 
from monotonic trend. Sit(θ) is determined by fitting 
a monotonically increasing function to experimental 
values of Si. 

Apart from peak trimming and trend 
normalization, experimental time histories Si(θ) are 
normalized with respect to their initial values Si(0). 
This allows for comparing symptoms of different 
physical origins, as all normalized symptoms are 
dimensionless. Normalized symptoms are indicated 
by lower-case symbols. In order to avoid an 
influence of a possible outlier on Si(0), its value is 
determined as a mean of first three measurements. 
Fig. 2 shows the results of above-described pre-
processing of measurement data. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Effect of peak trimming and trend 
normalization: raw (a) and pre-processed (b) data. 

Exponential function sit(θ) has been used 

3. REPRESENTATIVENESS FACTOR 
 
In a descriptive manner we may refer to the 

entropy decrease with time as an organization of 
symptom time history around some monotonically 
increasing curve with a vertical asymptote. Degree 
of this organization, of which entropy is a measure, 
increases with lifetime consumption. However, 
increase rate of the symptom itself is also of 
importance. Organization may take place around a 
curve that is only weakly increasing. Such symptom, 
comparatively insensitive to object condition 
evolution, would have been of little use. An example 
is shown in Fig.3a. It is easily seen that there is 
some entropy decrease, but at the same time 
symptom value fluctuates about some almost con-
stant value. In fact this symptom reveals weak only 
very weak increasing trend (see Fig.3b). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. (a) Plot of normalized symptom and entropy 
vs. time, showing entropy decrease and low 

symptom sensitivity to object condition;  
(b) exponential approximation of normalized 

symptom vs. time (broken line) 
 
A more elaborate index is thus necessary that 

would combine information content and symptom 
increase rate measures. Such suggestion was put for-
ward by the author in a previous study [8]. Initially 
exponential approximation was used for symptoms 
which, however, fails as θ → θb. It is therefore 
proposed to use linear approximation for entropy: 

h ≈ h(0) – A ⋅ θ  (A > 0)  ,             (9) 
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Weibull approximation for normalized symptom: 
 

s(θ) ≈ [ln(1/(1 – θ/θb)]1/γ             (10) 
 
and define representativeness factor as R = A/γ. 
Obviously R should be positive (excluding situations 
where both A and γ are negative); the larger R, the 
more representative is the symptom under conside-
ration. 
 
4. EXAMPLE 
 
4.1. Object and data acquisition 

The suitability of the above-described approach 
was tested with data obtained for steam turbine 
fluid-flow system. The object under consideration 
was a 230 MW condensing unit, operated by a large 
utility power plant. It comprises high-pressure (HP), 
intermediate-pressure (IP) and low-pressure (LP) 
turbines, with shaft supported by seven journal 
bearings. Photo of the turbine-generator unit is 
shown in Fig.4. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Photo of the 230 MW turbine-generator unit 

(source: Wikipedia) 
 

The unit was commissioned in 1998 and 
acquisition of vibration data started soon afterwards. 
Vibration velocity spectra were recorded at points 
located on turbine bearings and LP casing (front and 
rear part). Frequency range was set at 
10 kHz and 23% CPB spectra were used. Available 
database covers a period of over sixteen years, with 
average time interval between successive measure-
ments of about 56 days. 

In the following, attention shall be focused on 
the LP turbine. Due to lower temperature and 
comparatively low pressure gradients, deterioration 
of the LP fluid-flow system technical condition is 
slower than for HP and IP ones. Moreover, much 
weaker influence of control should be expected [11]. 
In practice vibration time histories recorded at points 
associated with the LP turbine in the blade 
frequency range are somehow more regular than for 
HP and IP turbines and the period of sixteen years 
should be long enough to detect an increasing trend. 
It has to be noted that LP casing was not opened 
during the period under consideration, so it may be 
assumed that we are dealing with a single life cycle. 

This is important, as suitable normalization should 
be otherwise performed [3]. 

According to the turbine vibrodiagnostic model 
[12], LP fluid-flow system generates components 
that are contained in five 23% CPB bands, with mid-
frequencies of 1.6 kHz, 2.5 kHz, 3.15 kHz, 4 kHz 
and 6.3 kHz. Given four measurement points (front 
LP bearing, LP casing front/rear and rear LP 
bearing) and three directions (vertical, horizontal 
and axial), we arrive at sixty distinct symptoms. 
 
4.2. Preliminary selection of symptoms 

For the sake of clarity it was decided to perform 
a preliminary selection of symptoms, employing the 
SVD method. Details of relevant procedures may be 
found in author’s previous papers (see e.g. [8]). It 
has been found that the contributions of first three 
singular values into generalized damage amount to 
28.5, 10.5 and 6 percent, respectively. Combined 
contributions of first six singular values are about 60 
percent. This suggests that the dominating damage 
mechanism has already appeared. On this basis, 
twelve symptoms with the highest contributions into 
first three singular values have been determined. 
They are listed in Table 1.  
 

Table 1. Results of preliminary symptoms selection 
 
Symptom 
No. 

Point Direction Mid-freq. 
[kHz] 

1 vertical 6.3 
2 horizontal 4.0 
3 horizontal 6.3 
4 

 
Front 

bearing 
axial 6.3 

5 vertical 4.0 
6 vertical 6.3 
7 horizontal 4.0 
8 

 
Casing 
front 

axial 4.0 
9 horizontal 4.0 

10 
Casing 

rear axial 4.0 
11 vertical 6.3 
12 

Rear 
bearing horizontal 4.0 

 
It is noteworthy that all twelve symptoms selec-

ted in this manner represent the 4 kHz and 6.3 kHz 
frequency bands. This implies that fluid-flow system 
degradation processes are more pronounced for first 
two LP turbine stages [12]. 

The following ICM analysis has been performed 
for twelve symptoms listed in Table 1. 
 
4.3. ICM analysis 

Calculations of differential entropy for all selec-
ted symptoms have been performed with the 
following assumptions: 
− time window length: 25 consecutive data points; 
− distribution type: normal; 
− peak trimming thresholds: ch = 1.5, cl = 0.7; 
− trend normalization: exponential; 
− logarithm base: e (entropy given in nats). 
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Results are presented graphically in Fig.5. As one 
common drawing for all twelve symptoms would 
have been rather difficult to interpret, it has been 
divided into four parts, each for three symptoms. 

Cursory and qualitative examination of entropy 
time histories shown allows for distinguishing three 
types of behaviour: 
− erratic (comparatively large fluctuations, but no 

marked increasing or decreasing trend: 
symptoms Nos. 3, 4 and 6); 

− weakly time-dependent (small and slow 
variations, lack of pronounced increasing or 
decreasing trend: symptoms Nos. 7 and 10); 

− decreasing (with various decrease rates: 
symptoms Nos. 1, 2, 5, 8, 9, 11 and 12). 

Moreover, it can be seen that in some cases there is 
a slight entropy increase starting at about θ = 4500 
days. The reasons of this phenomenon are unclear. 
As already mentioned, LP turbine casing was not 
opened during the entire period under consideration. 
On this basis it was assumed that we are dealing 
with a single life cycle and thus a continuous smooth 
symptom life curve. However, other activities 
cannot be excluded that influence vibration spectra 
in the blade frequency range recorded in accessible 
points. No traces of such activities have been found. 
In general, such occurrence should result in an 
abrupt, stepwise change of Si(θ). It has already been 
suggested [8] that some method for detecting such 
changes could be applied. One method of this type, 
known as CUSUM (Cumulative Sum Control Chart) 
(see e.g.[13]) is currently studied by the author. 

Bearing in mind that the linear approximation of 
entropy given by Eq.(9) may be a rough one, values 
of the coefficient A for above-mentioned twelve 
symptoms have been calculated and given in Table 
2.  
 

Table 2. Linear approximation coefficient values 
 

Symptom No. A (× 10-4) [nat/day] 
1 4.321 
2 3.290 
3 -0.874 
4 1.506 
5 0.603 
6 1.345 
7 0.054 
8 1.183 
9 2.578 

10 -0.031 
11 2.090 
12 0.368 

 
From Table 2 it is easily seen that values of the 

linear approximation coefficient vary within quite 
broad limits. Symptoms Nos. 3 and 10 can be imme-
diately excluded, as A is for them negative (albeit 
small). Best results have been obtained for 
symptoms Nos. 1, 2, 9 and 11. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Differential entropy time histories for 

symptoms listed in Table 1; (a) symptoms 1 – 3; (b) 
symptoms 4 – 6; (c) symptoms 7 – 9; (d) symptoms 

10 – 12 
 

Table 3 lists representativeness factor values, 
calculated with the assumption of Weibull symptom 
life curve. Four values are negative, which means 
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that relevant symptoms should be excluded. In fact 
this is the case with symptom No. 2, which has com-
paratively high entropy decrease rate. The highest 
value is obtained for symptom No. 1, with symptom 
No. 11 ranking second. These should be considered 
most representative for lifetime consumption 
assessment. 

 
Table 3. Representativeness factor values 

 
Symptom No. R (× 10-4) [nat/day] 

1 5.490 
2 -0.563 
3 -0.945 
4 1.540 
5 0.931 
6 1.306 
7 0.025 
8 0.479 
9 1.555 

10 -0.001 
11 2.761 
12 -0.012 

 
3. SUMMARY 

 
The ICM method is comparatively simple and 

yields reasonable results. On the other hands, there 
are several things that might be improved. It may be 
noted that entropy time histories are in many cases 
rather irregular. One possible reason has already 
been discussed. Another one may be related to the 
time window procedure. The window containing 
only 25 data points is rather small, but available 
database does not seem to allow for a much broader 
one. Data pre-processing, in particular removing of 
outliers, might also be modified (see e.g. [14]). With 
this in mind, the concept seems interesting and 
deserving further studies. 
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